数列求和同步练习题与答案解析_第1页
数列求和同步练习题与答案解析_第2页
数列求和同步练习题与答案解析_第3页
数列求和同步练习题与答案解析_第4页
数列求和同步练习题与答案解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、精选优质文档-倾情为你奉上数列求和 基础题1数列12n1的前n项和Sn_.2若数列an的通项公式是an(1)n(3n2),则a1a2a10_.3数列1,3,5,7,的前n项和Sn_.4已知数列an的通项公式是an,若前n项和为10,则项数n_.5数列an,bn都是等差数列,a15,b17,且a20b2060.则anbn的前20项的和为_6等比数列an的前n项和Sn2n1,则aaa_.7已知等比数列an中,a13,a481,若数列bn满足bnlog3an,则数列的前n项和Sn_.二、解答题(每小题15分,共45分)8已知an为等差数列,且a36,a60.(1)求an的通项公式;(2)若等比数列b

2、n满足b18,b2a1a2a3,求bn的前n项和公式9设an是公比为正数的等比数列,a12,a3a24.(1)求an的通项公式;(2)设bn是首项为1,公差为2的等差数列,求数列anbn的前n项和Sn.10已知首项不为零的数列an的前n项和为Sn,若对任意的r,tN*,都有2.(1)判断an是否是等差数列,并证明你的结论;(2)若a11,b11,数列bn的第n项是数列an的第bn1项(n2),求bn;(3)求和Tna1b1a2b2anbn.能力题1已知an是首项为1的等比数列,Sn是an的前n项和,且9S3S6,则数列的前5项和为_2若数列an为等比数列,且a11,q2,则Tn的结果可化为_3

3、数列1,的前n项和Sn_.4在等比数列an中,a1,a44,则公比q_;|a1|a2|an|_.5已知Sn是等差数列an的前n项和,且S1135S6,则S17的值为_6等差数列an的公差不为零,a47,a1,a2,a5成等比数列,数列Tn满足条件Tna2a4a8a2n,则Tn_.7设an是等差数列,bn是各项都为正数的等比数列,且a1b11,a3b521,a5b313.(1)求an,bn的通项公式;(2)求数列的前n项和Sn.8在各项均为正数的等比数列an中,已知a22a13,且3a2,a4,5a3成等差数列(1)求数列an的通项公式;(2)设bnlog3an,求数列anbn的前n项和Sn.提

4、高题1. (北京卷)设,则等于( )A. B. C.D.2. 等差数列an中,a1=1,a3+a5=14,其前n项和Sn=100,则n=( )A9 B10 C11 D123. (福建)数列的前项和为,若,则等于( )A1 B C D4. (全国II)设Sn是等差数列an的前n项和,若,则( )A. B. C. D.5. (天津卷)已知数列、都是公差为1的等差数列,其首项分别为、,且,设(),则数列的前10项和等于()A55 B70C85D1006. (江苏卷)对正整数n,设曲线在x2处的切线与y轴交点的纵坐标为,则数列的前n项和的公式是7. (07高考天津理21)在数列中,其中()求数列的通项

5、公式;()求数列的前项和;8、(06湖北卷理17)已知二次函数的图像经过坐标原点,其导函数为,数列的前n项和为,点均在函数的图像上。()求数列的通项公式;()设,是数列的前n项和,求使得对所有都成立的最小正整数m;9、求数列的前n项和:,参考答案基础题1. 解析Snnn2n1.答案n2n12. 解析设bn3n2,则数列bn是以1为首项,3为公差的等差数列,所以a1a2a9a10(b1)b2(b9)b10(b2b1)(b4b3)(b10b9)5×315.答案153. 解析由题意知已知数列的通项为an2n1,则Snn21.答案n214. 解析an,Sna1a2an(1)()()1.令11

6、0,得n120.答案1205. 解析由题意知anbn也为等差数列,所以anbn的前20项和为:S20720.答案7206. 解析当n1时,a1S11,当n2时,anSnSn12n1(2n11)2n1,又a11适合上式an2n1,a4n1.数列a是以a1为首项,以4为公比的等比数列aaa(4n1)答案(4n1)7. 解析设等比数列an的公比为q,则q327,解得q3.所以ana1qn13×3n13n,故bnlog3ann,所以.则数列的前n项和为11.答案8. 解(1)设等差数列an的公差为d.因为a36,a60,所以解得a110,d2.所以an10(n1)·22n12.(2

7、)设等比数列bn的公比为q.因为b2a1a2a324,b18,所以8q24,即q3.所以bn的前n项和公式为Sn4(13n)9. 解(1)设q为等比数列an的公比,则由a12,a3a24得2q22q4,即q2q20,解得q2或q1(舍去),因此q2.所以an的通项为an2·2n12n(nN*)(2)Snn×1×22n1n22.10. 解(1)an是等差数列证明如下:因为a1S10,令t1,rn,则由2,得n2,即Sna1n2,所以当n2时,anSnSn1(2n1)a1,且n1时此式也成立,所以an1an2a1(nN*),即an是以a1为首项,2a1为公差的等差数列

8、(2)当a11时,由(1)知ana1(2n1)2n1,依题意,当n2时,bnabn12bn11,所以bn12(bn11),又b112,所以bn1是以2为首项,2为公比的等比数列,所以bn12·2n1,即bn2n1.(3)因为anbn(2n1)(2n1)(2n1)·2n(2n1)Tn1·23·22(2n1)·2n13(2n1),即Tn1·23·22(2n1)·2nn2,2Tn1·223·23(2n1)·2n12n2,得Tn(2n3)·2n1n26.能力题1. 解析设数列an的公

9、比为q.由题意可知q1,且,解得q2,所以数列是以1为首项,为公比的等比数列,由求和公式可得S5.答案2. 解析an2n1,设bn2n1,则Tnb1b2bn32n1.答案3. 解析由于数列的通项an2,Sn22.答案4. 解析q38,q2.|a1|a2|an|2n1.答案22n15. 解析因S1135S6,得11a1d356a1d,即a18d7,所以S1717a1d17(a18d)17×7119.答案1196. 解析设an的公差为d0,由a1,a2,a5成等比数列,得aa1a5,即(72d)2(73d)(7d)所以d2或d0(舍去)所以an7(n4)×22n1.又a2n2&

10、#183;2n12n11,故Tn(221)(231)(241)(2n11) (22232n1)n 2n2n4.答案2n2n47. 解(1)设an的公差为d,bn的公比为q,则依题意有q0且解得所以an1(n1)d2n1,bnqn12n1.(2),Sn1,2Sn23.,得Sn2222×22×6.8. 解(1)设an公比为q,由题意,得q0,且即解得或(舍去)所以数列an的通项公式为an3·3n13n,nN*.(2)由(1)可得bnlog3ann,所以anbnn·3n.所以Sn1·32·323·33n·3n.所以3Sn

11、1·322·333·34n·3n1两式相减,得2Sn3(32333n)n·3n1(332333n)n·3n1n·3n1.所以数列anbn的前n项和为Sn.提高题1、 D2、 B3、 B4、 A解析:由等差数列的求和公式可得且所以,故选A5、 C解:数列、都是公差为1的等差数列,其首项分别为、,且,设(),则数列的前10项和等于=, =,选C6、解:,曲线y=xn(1-x)在x=2处的切线的斜率为k=n2n-1-(n+1)2n切点为(2,-2n),所以切线方程为y+2n=k(x-2),令x=0得 an=(n+1)2n,令bn=.数列的前n项和为2+22+23+2n=2n+1-27、()解:由,可得,所以为等差数列,其公差为1,首项为0,故,所以数列的通项公式为()解:设,当时,式减去式,得,这时数列的前项和当时,这时数列的前项和8、解:()设这二次函数f(x)ax2+bx (a0) ,则 f(x)=2ax+b,由于f(x)=6x2,得a=3 , b=2, 所以 f(x)3x22x.又因为点均在函数的图像

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论