


版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、曲线运动复习导学案高考要求:1. 运动的合成与分解(U)2. 曲线运动中质点的速度的方向沿轨道的切线方向,且必具有加速度(I)3. 平抛运动(U)4. 匀速率圆周运动,线速度和角速度,周期,转速(I)5. 圆周运动的向心加速度,向心力(U)6.离心现象(I)1、曲内容说明定义1.物体的运动轨迹是曲线的运动。因为曲线运动的随时在变,因此曲2.速度方向时刻发生变化的运动线运动是° - 1 '运动条件物体受到的合外力为时物体会做匀变速曲线运动,此时物体的加速度。特点1.物体作曲线运动时某一点的 方向,速度凸广轨迹速度不断改变。F2.物体做曲线运动时,受到的合力的相应的加速度一定不为
2、零,并总是指向运动轨迹弯曲的侧例1:关于曲线运动,以下说法正确的有(A.做曲线运动的物体一定具有加速度C?加速度和速度数值均不变的运动是直线运动2、物体受到的合外力方向与速率的关系:(1 )当物体受到的合外力与速度的夹角为(2) 当物体受到的合外力与速度的夹角为(3) 当物体受到的合外力与速度的夹角为?做曲线运动的物体,加速度一定是变化的D.物体在恒力作用下,不可能做曲线运动时物体运动的速率将变大。时物体运动的速率将不变。时物体运动的速率将变小。3、 合运动和分运动的关系: 的关系4、运动的合成与分解:(1) 意义:合成与分解的目的在于将复杂运动转化为简单运动,将曲线运动转化为直线运动,便于研
3、究(2) 法那么:。(3) 常用分解方法:按实际产生的效果例2:在右图中,用绳子通过定滑轮拉物体船欢送阅读当以速度V匀速拉绳子时,求船的速度.A的受力情例3:如右图,在不计滑轮摩擦和绳子质量的条件下,当小车匀速向右运动时,物体况是.绳的拉力大于A的重力.绳的拉力等于A的重力.绳的拉力小于A的重力.拉力先大于重力,后变为小于重力5、判断互成角度的两分运动合运动的运动性质的一般方法 :的关1先合成加速度,分析加速度的变化情况;再合成初速度,分析初速度方向与加速度放向间 系,判断运动性质。2求轨迹方程,根据运动轨迹判断运动性质。 实例探究:两个匀速直线运动的合运动是两个初速度为零的匀加速直线运动的合
4、运动是个匀加速直线运动和一个匀速直线运动的合运动是 两个初速度不为零的匀加速直线运动的合运动1234例4:关于互成角度的两个初速度不为零的匀变速直线运动的合运动,船头方向应过河时间tmin.合运动的性质一定是匀变速运动D.合运动的性质无法确定列说法正确的选项是A.合运动的轨迹一定是抛物线C?合运动的轨迹可能是直线,也可能是曲线6. 小船渡河问题的分析:设水速为Vi,船在静水中的速度为V2,河宽为d(2)以最短位移过河: 当船速大于水速时V2 Vi :船头方向应船头方向与河岸方向的夹角为渡河时间t二,船过河二,那么com = 当水速大于船速时V2 7 :船头方向应船头方向与河岸方向的夹角为二,那
5、么cos,渡河时间(1)以最短时间过河:例5:如下图,一条小船位于200m宽的河的正中点A处,从这里向下游100.3m处有一危险区,当时水流速度为4.0m/s,为了使小船避开危险区沿直线到达对岸,小船在静水中的速度至少是()100j3mA 433m/s Bm/s C . 2.0m/s.4.0m/s7. 平抛运动1定义:水平抛出的物体只在 作用下的运动。2 性质:是加速度为 动。规律:可分解为水3抛体运动中的速度变化量的方向:抛体运动中任何一段时间内的速度变化方向均 平方向的和竖直方向的合运动。水平方向做;竖直方向做设初速度为V0,那么tVx秒末 水平方向的分速度表达式: 竖直方向的分速度表达式
6、:s合速度大小的表达式:V二 合速度方向与水平方向间的夹角设为 一:,那么tan 1二 水平方向的分位移表达式:x二;竖直方向 的分位移表达式:y二 合位移大小的表达式:S =合位移方向与水平方向间的夹角设为:?,那么tan2h落地时间由竖直方向分运动决定:由h=0得:g5平抛运动的几个结论:水平飞行射程由高度和水平初速度共同决定 平抛物体任意时刻瞬时速度 V与平抛初速度V0夹角9 a的正切值为位移s与水平位移x夹角B正切值的两倍 平抛物体任意时刻瞬时速度方向的反向延长线与初速度延长线的交点到点的距 离都等于水平位移的一半? 平抛运动中,任意一段时间内速度的变化量 v= gA t,方向恒为竖直
7、向与 g同向。任意相同时间内的速度的变化量 A v都相同包括大小、方向,如右图 以不同的初速度,从倾角为9的斜面上沿水平方向抛出的物体,再次落到斜 面 a相同,与初速度无关。飞行的时间与速度有关 ,上时速度与斜面的夹角 速度越大时间 越长。如右图:所以t =2VtanrVy gttan (a 巧二丄=9Vx V0 速度V的方向始终与重力方向成一夹角,故其始终为曲线运动,随着时间的增加, ta nr变大,速度V与重力 的方向越来越靠近,但永远不能到达例6:如下图,墙壁上落有两只飞镖,它们是从同一位置水平射出的,飞镖A与竖直墙壁成 3 W53。角,飞镖B与竖直墙壁成37°角,两者相距为d
8、,假设飞镖的运动是平抛运动求射出点离墙壁的水平距离?(sin37 ° =0.6,cos37 ° = 0.8)8、描述圆周运动的物理量:线速度角速度周期转速标矢性(J ; 广 1 21尹厂(|公式. .单位1 |相互关系、,、八意匀速圆周运动中的“匀速"指“不变",圆周运动是一种运动9、机械传送中的两个重要思路:(1)但凡直接用皮带传动(包括链条传动、摩擦传动)的两个轮子,两轮边缘上各点的 相等之 但凡同一个轮轴上(各个轮都绕同一个转例7:如下图装置中,三个轮的半径分别为r、2r、4r,b (2)圆心的距离为r,求图中a、b、c、d各点的线速度之比、角比、
9、加速度之比动轴同步转动)的轮子,轮上各点的10、向心加速度(1)(2)(3)(4)物理意义:描述的快慢。7定义:做匀速圆周运动的物体具有的沿半径指向圆心的加速度,叫做向心加速度,方向。是变加速度。大小:a = 方向:总是指向11、匀速圆周运动:(1) 定义:物体运动轨迹是圆周或的运动叫做圆周运动,做圆周运动的物体在任意相同时间内通过的 相等,这种运动叫做匀速圆周运动2性质: 大小不变,的变速运动。 大小不变, 的变加速运动12、向心力:(1)定义:在圆周运动中产生向心加速度的力叫做向心力点到速度D 2作用效果:产生是变力。向心力是按 命名的。所以不能说某一物体受到了向心力,只能说某个力、哪些力
10、的合力或哪个力的分力提供了向心力。受力分析时,没有向心力。3 小:F 向二4 特点:向心力方向 ,只改变速度的 ,不改变速度的 。匀速圆周运动:物体所受到的 供向心力,向心力大小 ,方向,始终与速度方向 且指向 0变速圆周运动:合外力 圆心。合外力的沿 方向的分力提供向心力,使物体产生,改变速度的;合外力的沿方向的分力,使物体产生切向加速度,改变速度的13 ?竖直平面内圆周运动的常用模型:轻绳模型轻杆模型过拱桥常见 类型轻绳外轨道无支撑的情况轻杆管道有支撑的情况无约束的情景对最 高占 的分析 v a #gR时绳子或轨道对物体的弹力为,方向 v - *'gR时绳子或轨道对物体 的弹力为
11、vwjgR时,物体 v = v'gR是物体能否在竖直面上 能过最高点能完成完整的圆周运 动的最小速度。 时轻杆或管道对物体的弹力为,方向 v = J gR时轻杆或管道对物体的弹力为 时,轻杆或管道对物体的弹力为,方向 v=jgR是物体所受弹力的方 向变 化的临界速度.当v A JgR时,车 v = JgR 是汽在竖直面上做 圆周运动的最大 速度例8:如下图,长度为L= 0. 5m的轻杆其下端固定于转轴 O,上端连接质量为 W2. Okg的物体A,物 体A随看轻杆一起绕0点在竖直平面内做圆周运动,求在最高点时以下两种情况下球对轻杆的作用力、£门1 A 的速率为 1. Om/s
12、;A的速率为4. On/s.14. 离心运动:定义:做匀速圆周运动的物体,在所受 提供做圆周运动所需向心力时,就做逐渐远离圆心的运动,这种运动叫离心运动离心现象是物体惯性的表现。离心运动并非沿半径方向飞出的运动,而是运动半径越来越大的运动或沿切线方向飞出的运动 例9:质量为m的物体在细绳拉力作用下在光滑水平面内做圆周运动 ,它运动到A点时,细绳突然断了如图,画出了短绳后物体四条可能轨迹,其中正确的选项是:A、B、C、D、1.如下图,压路机后轮半径是前轮半径的综合演练3倍,A B分别为前轮和后轮边缘上的一点,C为后轮上的一点它离后轮轴心的距离是后轮半径的一半,那么A BC三点的角速度之比为,线速
13、度之比为向心加速度之比为 aA : aB : ac=2.如图甲、乙、丙三个轮子依靠摩擦传动,VAVBvc =相互之间不打滑,其半径分别为假设甲轮的角速度为CD i,那么丙轮的角速度为A、rsri3.做匀速圆周运动的物体,C、以下物理量中不变的是A .速度 B.速率C ?角速度4. 关于匀速圆周运动,以下说法正确的选项是A .匀速圆周运动是匀速运动 变速曲线运动C. 物体做匀速圆周运动是变加速曲线运动5. 关于向心力的说法正确的选项是A .物体由于作圆周运动而产生一个向心力B .向心力不改变做匀速圆周运动物体的速度大小C?做匀速圆周运动的物体的向心力即为其所受合外力D. 做匀速圆周运动的物体的向
14、心力是个恒力D?做匀速圆周运动的物体必处于平衡状态6. 如下图,两根细线把两个相同的小球悬于同一点,并使两球在同一水平面内做匀速圆周运动,其中小球1的转动半径较大,那么两小球转动的角速度大小关系为D iD 2,两根线中拉力大小关系为Ti T2,填“V或“=7. 如下图,水平转台上放有质量均为 m的两小物块A B, A离转轴距离为L,A B间用长为L的细线相连,开始时A、B与轴心在同一直线上,线被拉直,A、B与水平转台间最大静摩擦力均为 重力 的卩倍,当转台的角速度到达多大时线上出现张力?当转台的角速度到达多大时A物块开始滑动?8.长为L的细线,拴一质量为m的小球,一端固定于0点,让其在水平面内
15、做匀速圆周运动 (这种 运动通常称为圆锥摆运动),如下图,当摆线L与竖直方向的夹角是a(1)时,求:线的拉力F;小球运动的线速度的大小; 小球运动的角速度及周期。(3)9.如下图,在绕竖直轴匀速转动的水平圆盘盘面上,离轴心r= 20cm处放置一小物块A,其质量为2kg, A与盘面间相互作用的静摩擦力的最大值力的k倍(k= 0.5 ),试求当圆盘转动的角速度 3= 2rad/s时,物块与圆盘间的摩擦力大小多大?方向如何?欲使A与盘面间不发生相对滑动,那么圆盘转动的最大角速度多大?(取为其重10. 如下图,质量为n=0.1kg的小球和A、B两根细绳相连,两绳固定在细 点,其中A绳长L=2m当两绳都
16、拉直时,A B两绳和细杆的夹角 2=45° g=10m/s2.求:(1) 当细杆转动的角速度3在什么范围内,A、B两绳始终张紧?(2) 当3 =3rad/s时,A B两绳的拉力分别为多大?11. 如下图,半径为R,内径很小的光滑半圆管竖直放置。两个2ABC 质虽均为m的小球a b以不同的速度进入管内,a通过最高点A时,对管壁上 为3mg b通过最高点A时,对管壁下部的压力为0.75 mg求a、地点间的距 离。12. 如图,长度为L=1.0m的绳,栓着一质 量n=1kg小球在竖直运动,小球半径不计,绳子能够承受的最大张力为74N,面高度h=6m,运动过程中绳子始终处于绷紧状态。求:(1
17、) 分析绳子在何处最易断,求出绳子断时小球的线速度。(2) 绳子断后小球平抛运动的时间及落地点与抛出点的水平距离13. 如下图,在水平固定的光滑平板上,有一质量为M的质点中央小孔H的轻绳一端连着。平板与小孔是光滑的,用手拉着绳子A部的压力 b两球落b a面内做圆 関心fO与穿过 下端,使质点做半径为a、角速度为3 i的匀速圆周运动。假设绳子迅速放松至某一长度 b而拉紧,质点就能在以半径为b的圆周上做匀速圆周运动.求质点由半径a到b所需的时间及质点在半径为b的圆周HP,上运动的角速度14.在光滑的水平面上相距40 cm的两个钉子A和B,如下图,长1 m的细绳一端系着质量为0.4 kg的 小球,另
18、一端固定在钉子 A上,开始时,小球和钉子 A B在同一直线上,小球始终以2 m/s的速率在水 平面上做匀速圆周运动.假设细绳能承受的最大拉力是 4N,那么,从开始到细绳断开所经历的时间是()A. 0.9 二 s B . 0& sA B欢送阅读C. 1.2 :s D . 1.6 二 s15.如下图,在光滑的圆锥顶端,用长为L=2m的细绳悬一质量为 m=1kg的小球,圆锥顶角为 2 0 =74°。求: 当小球3 =1rad/s的角速度随圆锥体做匀速圆周运动时,细绳上的拉力。(2)当小球以3 =5rad/s的角速度随圆锥体做匀速圆周运动时,细绳上的拉力。16. 如下图,用细绳一端系着的质量为M=0.6kg的物体A静止在水平转盘上,细绳另一端通过转盘中心的光滑小孔 0吊着质量为n=0.3kg的小球B, A的重心到0点的距 离为0.2m.假设A与转盘间 的最大静摩擦力为f=2N,为使小球B保持静止,求转盘绕中心 O旋转的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 建筑钢材期货锁价采购绿色节能合同
- 汽车广告创意设计及营销合同
- 宠物粪便处理责任保证协议(住宅小区)
- 游戏虚拟货币发行与内容版权保护协议
- 高空作业安全盘扣式脚手架租赁一体化服务合同
- 夫妻间电子设备使用规范及忠诚度保障协议书
- Web前端开发课件 项目一 HTML文档结构
- DB42-T 2005.2-2023 就业创业服务 第2部分:创业担保贷款网办服务规范
- 教师心理健康学习心得体会模版
- 2023年人教版四年级语文上册八单元测试卷及答案2
- 《念奴娇++过洞庭》教学设计++2024-2025学年统编版高一语文必修下册
- 交通枢纽的安全管理事故预防与应急处理策略
- 《浙江省中药饮片炮制规范》 2015年版
- 第19课《紫藤萝瀑布》课件-2024-2025学年统编版语文七年级下册
- 主题班会AI时代中学生的机遇与成长
- 供电公司故障抢修服务规范
- 初中体育课堂安全教育
- 码头安全生产知识
- 全屋整装培训
- 《风电安全生产培训》课件
- 常见病用药指导技术知到智慧树章节测试课后答案2024年秋天津生物工程职业技术学院
评论
0/150
提交评论