


版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、有限元复习宝典整理by滴水特别适用于华中科技大学研究生课程?有限元分析及应用?考前复习, 答案仅供参考。重点掌握一般问题的描述、模型简化、有限元的根本思想及分析原理、 位移法求解根本过程、位移函数构造、单元特性、有限元计算的具体操作单元刚阵形成、总纲阵组装、边界条件处理载荷等效/边界约束施加、 有限元分析的具体操作一.根本概念1. 平面应力/平面应变问题;空间问题/轴对称问题;板壳问题;杆梁问题;温度场;线性问题/非线性问题材料非线性/几何非线 性等平面应力冋题(1)均匀薄板2载荷平行于板面且沿厚度方向均匀分布在六个应力分量中,只需要研究剩下的平行于 XOY平面的三个应力分量,即 x、y、xy
2、yx z°,zxxz0,zyyz0°般z 0 , z并不一定等于零,但可由 x及y求得,在分析问题时不必考虑。于是只需要考虑 x、 y、xy三个应变分量即可。平面应变冋题(1)纵向很长,且横截面沿纵向不变。2载荷平行于横截面且沿纵向 均匀分布z yz zx 0只剩下三个应变分量X、y、xy。也只需要考虑x、 y、 xy三个应力分量即可轴对称问题物体的几何形状、约束情况及所受外力都对称于空间的某一根轴轴对称单元的特点与平面三角形单元的区别:轴对称单元为圆环体,单 元与单元间为节圆相连接;节点力与节点载荷是施加于节圆上的均布力;单元边 界是一回转面;板壳问题一个方向的尺寸比另外
3、两个方向尺寸小很多, 且能承受弯矩的结构称为板壳 结构,并把平分板壳结构上下外表的面称为中面。 如果中面是平面或平面组成的 折平面,那么称为平板;反之,中面为曲面的称为壳。杆梁问题杆梁结构是指长度远大于其横断面尺寸的构件组成的系统。在结构力学中常将承受轴力或扭矩的杆件成为杆,而将承受横向力和弯矩的杆件称为梁。线性问题/非线性问题线性问题:基于小变形假设他,应力与应变,应力与位移,平衡方程都是线 性的。非线性问题:材料非线性(非线性弹性、非线性弹塑性),几何非线性大变 形大应变如金属橡胶,小应变大位移如薄壁结构空间问题、温度场问题,略2. 不同类型单元的节点自由度的理解和不同单元连接的处理不同类
4、型单元的节点自由度:单兀类型节点数节点自由度杆单元21 :梁单元23平面单元32平面四边形42轴对称问题32板壳单元43四面体单兀43不同单元连接的处理如果两相邻单元在连接处节点重合且节点自由度相同,可直接连接,那么此时不 同单元的刚度矩阵可类似单一单元分析一样直接组集。如果两相邻单元在连接 处节点不重合、或节点自由度不同那么要特别处理,处理的根本条件是保证相邻 单元的连接节点的自由度相容,相邻单元在连接的交界面上的位移协调。(1) 节点不重合的单元连接单元类型相同节点不重合略。(2) 节点自由度不同的连接单元类型不同杆-梁连接 将杆单元节点自由度扩展,或引入特殊单元梁-平面单元连接人为将梁单
5、元延伸一段或人为建立平面单元上s、m 处的位移与梁单元A节点位移的约束关系3. 有限元法的根本思想二次近似与有限元分析的根本步骤5步有限元法的根本思想:先将求解域离散为有限个单元,单元与单元只在节点相互连接-即原始连续求解域用有限个单元的集合近似代替第一次近似;对每个单元选择一个简单的场函数近似表示真实场函数在其上的分布规律, 该简单函数可由单元节点上物理量来表示-通常称为插值函数或位移函数第 二近似;基于问题的根本方程,建立单元节点的平衡方程即单元刚度方程;借助于矩阵表示,把所有单元的刚度方程组合成整体的刚度方程,这是一组以节点物理量为未知量的线形方程组,引入边界条件求解该方程组。有限元分析
6、的根本步骤:数学建模问题分析,结构离散第一次近似, 单元分析位移函数,单刚方程第二次近似,整体分析与求解总刚方程, 引入约束,解方程组求节点位移,根据节点位移求应力,结果分析及后处理。4. 里兹法的根本思想及与有限元法区别里兹法的根本思想:先根据描述问题的微分方程和相应定解条件构造等价的泛函变分形式,然后在整个求解区域上假设一个试探函数或近似函数,通过求解泛函极值来获得原问题的近似解。与有限元法的区别:里兹法是整体场函数用近似函数代替,有限 元法是离散求解域,分片连续函数来近似整体未知场函数。5. 有限元法的根本定义节点、单元、节点力、节点载荷?单元:即原始结构离散后,满足一定几何特性和物理特
7、性的最小结构域?节点:单元与单元间的连接点。?节点力:单元与单元间通过节点的相互作用力?节点载荷:作用于节点上的外载等效。6. 位移函数的构造方法及根本条件构造方法:1广义坐标法,按照帕斯卡三角形选择多项式,项数多少由单 兀的自由度数决定。2插值函数法,表示为形函数和节点位移的乘积表示。根本条件:1位移函数在单元节点的值应等于节点位移 即单元内部是连 续的;2所选位移函数必须保证有限元的解收敛于真实解。7. 位移函数的收敛性条件协调元、非协调元及单元协调性的判断位移函数的收敛性条件1位移函数应包含刚体位移2位移函数应包含常量应变反映单元的常应变状态3位移函数在单元内连续,在单元之间的边界上要协
8、调满足1和2称为完备单元,满足1,2,3称为协调单元。单元协调性的判断以3节点三角形单元为例,位移分量在每个单元中都是坐标的线性函数的 话,在公共边界上也会是线性变化的,那么相邻单元在公共边界上的任意一点都 具有相同的位移,也就是协调单元。8. 有限元解的性质有限元解具有下限性质,即有限元的解小于实际的精确解。这是因为实际结 构本来是具有无限自由度的,当用有限元求解时,结构被离散为有限个单元的集 合后,便只有有限个自由度了。由无限自由度变为有限自由度可以认为是对真实 位移函数增加了约束,限制了结构的变形能力,从而导致结构的刚度增大、计算 的位移减小。9. 弹性力学的几个根本概念位移、应力、应变
9、等位移,变形后位置;应变,变形程度;应力,受力状态。10. 弹性力学的根本方程平衡方程、几何方程、物理方程注意基本假设/与非线性比照,弹性力学根本方程的求解方法根本假设:物质是连续,均匀,完全弹性,各向同性,小变形平衡方程:ci- CZrdzSxTxy = TyX= J几何方程:dv厂.G£ 一二、exF 即 :%ecuYxy - P + 口 » Yyz Cl' exdv rv 1触 duitex C物理方程:f0-=门叮-2u 厂2(1-/)0 20-jU)11. 虚功原理、最小势能原理及变分法里兹法虚功原理:在力的作用下处于平衡状态的体系,当发生与约束条件相符合
10、的 任意微小的虚刚体位移时,体系上所有的主动力在虚位移上所作的总功各力所作的功的代数和恒等于零。最小势能原理:说明在满足位移边界条件的所有可 能位移中,实际发生的位移使弹性体的势能最小。12. 形函数特性1形函数Ni为x、y坐标的函数,与位移函数有相同的阶次。2形函数Ni在i节点处的值等于1,而在其他节点上的值为0。3单元内任一点的形函数之和恒等于 1。4形函数的值在0-1间变化。13. 单元刚度矩阵的性质及元素的物理意义单元刚度矩阵的性质:1对称性2奇异性,|K|=03主对角线元素恒为正值4奇偶行元素 之和分别为零各行或各列元素之和为零物理意义:单元刚阵K的物理意义是单元受节点力作用后抗变形
11、的能力。其中分块矩阵Kij的物理意义为:当在j节点处产生单位位移而其他节点位 移为零时,在i节点上需要作用力的大小。其中元素Kij表示在第j号自由度上产生单位位移时,其他自由度位移为零 时,在i号自由度上所需要施加的力的大小。单元刚度矩阵的元素表示该单元的各节点沿坐标方向发生单位位移时引起 的节点力,它决定于该单元的形状、大小、方位和弹性常数,而与单元的位置无 关,即不随单元或坐标轴的平行移动而改变。14. 常用单元的特性如单元内部边界位移/应变/应力分布,相邻单元边界的协调性分析常应变单元三角形/四面体;矩形单元;等参四边形单元;矩形板单元三节点三角形单元的位移函数为线性函数, 那么单元的应
12、变分量均为常量,故 这类三角形单元称为常应变单元,位移在单元内和边界上为线性变化,在相邻单 元边界处为连续。常应变三角形单元的应变矩阵 B为常量矩阵,说明在该单元 上的应力和应变为常值,在相邻单元的边界处,应变及应力不连续,有突变。矩形单元:4节点8自由度矩形单元。位移函数u = ax + a2x + a3y + xy+ a6 x + a7 y + xy满足收敛性条件,单元为协调单元。应变矩阵B是x,y的函数,应力也是随 x,y线性变化的,应力和应变在相邻单元边界处为连续。15. 等参单元定义、存在条件及特性等参单元定义:即以规那么形状单元如正四边形、正六面体单元等的位移 函数相同阶次函数为单
13、元几何边界的变换函数,进行坐标变换所获得的单元。由于单元几何边界的变换式与规那么单元的位移函数有相同的节点参数,故称由此获得的单元为等参单元。存在的充要条件:J|用附,为了保证能进行等参变换即总体坐标与局部坐标一一对应,通常要求 总体坐标系下的单元为凸,即不能有内角大于或等于或接近180度情况。特性:等参单元为协调元,满足有限元解收敛的充要条件。等参单元的优点 是当单元边界呈二次以上的曲线时,容易用很少的单元去逼近曲线边界。16. 边界条件处理载荷等效移置 集中力/均布力/线性分布力 边界位移约束处理 固定/指定位移等载荷等效移置连续弹性体离散为单元组合体时,为简化受力情况,需把弹性体承受的任
14、意 分布的载荷都向节点移置分解,而成为节点载荷。载荷移置的原那么:能量等效或静力等效原那么,即单元的实际载荷与移置 后的节点载荷在相应的虚位移上所做的虚功相等。集中力,移置到两端节点,使得 F1 L1 =F2 L 2, F1 +F2=F均布力,移置到两端节点,F1 =F2线性分布力,F1=1/3,F2=2/边界位移约束一.绝对位移约束刚性支座活动铰支,固定铰支,固接支座固定位移弹性支座线弹性制作,非线性支座一一可变位移强迫约束一一指定位移用载荷等效,装配应力+整体应力 二相对位移约束 如两接触面2耦合约束连接重合节点,模拟滑动边界连接,施加周期对称边界条件 常见的位移约束问题处理约束缺乏的处理
15、 利用对称性引进约束取1/n后,在对称面上施加位移约束(2) 转换载荷为位移约束受平衡载荷作用,将一局部载荷用位移约束代替(3) 人为增加约束约束点应尽量远离重要部位,约束点变形要相对小其他,杆离散为多个杆单元时,须在连接节点增加约束,只允许产生轴向位 移。轴对称结构,施加轴向约束。过约束的处理 有时需要施加过约束,有时需要释放过约束。17. 总体刚度矩阵组装原那么及总刚阵特点总体刚度矩阵组装原那么:1. 在整体离散结构变形后,应保证各单元在节点处仍然协调地相互连接,即 在该节点处所有单元在该节点上有相同位移。2整体离散结构各节点应满足平衡条件。即环绕每个节点的所有单元作用其 上的节点力之和应
16、等于作用于该节点上的节点载荷Ri。总刚阵特点:除了具有单元刚阵的特点外,还有1. 稀疏性,是指总刚矩阵的绝大多数元素都是零,非零子块只占一小局部。2. 带状性,是指总刚矩阵中非零子块集中在主对角线两侧,呈带状分布。附,半带宽B=相关节点号最大差值+1*节点自由度数18. 固有频率与特征向量振型定义及理解、振型特性动力方程广义特征值问题'"特征方程二 曲卩训 '的n个根称为特征值,它们的平方根成为系统的 固有频率。由每个固有频率求得的一组节点振幅不全为o的向量称为特征向 量,也称为振型或模态向量。振型的形状是唯一的,但其振幅不是唯一的;一个 特征值可对应有多个特征向量,
17、但一个特征向量只对应一个特征值。振型的正交性,任意两个特征值对应的特征向量关于质量矩阵或刚度矩阵正 交。厂仁心:_1000-10 "0«0-5a-%0*电*0一 S-500010-1一1-气» W 一-S01.50-.5一 5-15151、等效载荷计算单元刚阵计算.计算与证明三节点等厚三角形单元,节点坐标分别为Xi,yi,xj,yjbi = yyTntci = xJB-xi = yjn-7 =5m = yt-yrcm = xrxt求出求得应变矩阵0 0c( bf Cj对于平面应力问题有,弹性矩阵口 0 1 0 o 1_u rXm,ym对于以下图所示的直角等边三角形
18、单元,那么单元刚度矩阵人-整体方程的3、总体刚度矩阵及载荷向量组装, 约束条件的引入、求解包括约束反力计算1结构中的节点编码称为节点的总码,各个单元的三个节点又按逆时针方向编为i,j,m,称为节点的局部码。在单元刚度矩阵中,把节点的局部码换成总码, 并把其中的子块按照总码次序重新排列。得到扩大的单元刚度方程2据节点力平衡,各个单元相应节点力叠加=节点载荷:FieR i=1,.6e3整理可得整体平衡方程:KR,其中K为将各单元的扩大矩阵迭加所得出的结构刚度矩阵约束反力计算约束反力只有在由引入约束的整体方程求出所有节点位移分 量以后,然后回代到没有引入约束条件的整体方程的相应方程中才能求出。4、单
19、元形函数特性及单元协调性证明5、振型正交性证明略.建模与结果分析1. 影响有限元分析精度和本钱的因素影响有限元解的误差:1离散误差2位移函数误差分析精度:A、单元阶次B、单元数量C、划分形状规那么的单元D、建立与实际相符的边界条件 E、减小模型规模F、防止出现“病态方 程组,当总刚矩阵元素中各行或各列的值相差较大时,那么总刚近似奇异。2. 有限元模型的根本构成节点数据、单元数据、边界条件等节点数据:节点编号、坐标值、坐标参考系代码、位移参考系代码、节点数 量、单元编号单元数据:单元节点、编号单元、材料特性码、单元物理特性值码、单元截 面特性、相关几何数据边界条件数据:位移约束数据、载荷条件数据
20、、热边界条件数据、其他边界 条件数据3. 有限元建模的常用方法理解及应用如 细节处理、分步计算、局 部计算、子结构法、对称性简化等细节处理也称为小特征处理,即删除或抑制对结构力学性能影响不大的细小 结构分步计算,如果结构的局部存在相对尺寸非常小的细节,且又不能进行细节 处理,可采用分步计算来控制有限元模型的规模。局部处理就是从所建立的力学模型中抽取一局部出来进行分析,该局部通常是研究者最关心的的危险区域。子结构法是先将大型结构分解为假设干个结构区域,每个区域作为一个子结 构。子结构被进一步细分为单元,并人为地将子结构上的节点划分为边界节点和 内部节点两类对称性简化,对称性分为反射对称和周期对称1反射对称,受对称载荷作用那么对称面上的位移条件为垂直于对称面的移动位移分量为零。绕平行于对称面的两相互垂直的轴 的转动位移分量均为零。2反射对称,受反对称载荷作用那么对称面上的位移条件为平行于对称面的移动位移分量为零;绕方向矢量垂直于对称面的轴的转 动位移分量为零。3对称结构受任意载荷作用迭加原理4周期对称的位移条件,周期对称边界上的对应点有相同的位移状态4. 边界约束条件的处理见前。5. 不同求解方案正确性或优劣的判断略6. 单元类型选择的一般原那么选择原那么:同一问题所选单元应使计算精度高、收敛速度快
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 电站二次监控课件
- 高考化学重庆题讲解课件
- 高级摄影基础知识培训班课件
- 1.4用一元二次方程解决问题 分层练习(含答案)数学苏科版九年级上册
- 音乐三年级下册 卖报歌 课件(内嵌音频)
- GLP-1R-agonist-32-生命科学试剂-MCE
- 5-Azacytosine-15N4-生命科学试剂-MCE
- 初级社工考试题及答案
- 英美拼写考试题及答案
- 电源电路基础知识培训课件
- GB/T 10079-2018活塞式单级制冷剂压缩机(组)
- (完整版)人教版八年级下册《道德与法治》期末测试卷及答案【新版】
- 维护新疆稳定 实现长治久安课件
- 北京大学人民医院-医疗知情同意书汇编
- 体育社会学(绪论)卢元镇第四版课件
- 档案管理员述职报告9篇
- 舞台灯光基础知识教学课件
- 牙体牙髓病最全课件
- 脑卒中的功能锻炼课件
- 护理质控简报
- JJG 700 -2016气相色谱仪检定规程-(高清现行)
评论
0/150
提交评论