




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、课程名称: 数值代数课程设计 指导教师: 刘兰冬 班级: 姓名: 学号: 实验项目名称:二阶常微分方程边值问题实验目的及要求:二阶常微分方程边值问题,(该问题真解为:)步长h自己选定,利用差分法求出近似解,利用MATLAB函数画出比较图形。实验原理:一、微分方程:微分方程是现代数学中一个很重要的分支,从早期的微积分时代起,这个学科就成为了理论研究和实践应用的一个重要领域。在微分方程理论中,定解条件通常有两种提法:一种是给出了积分曲线在初始时刻的性态,相应的定解条件称为初值问题;另一种是给出了积分曲线首末两端的性态,这类条件则称为边界条件,相应的定解问题称为边值问题。常微分方程边值问题在应用科学
2、与工程技术中有着非常重要的应用,例如工程学、力学、天文学、经济学以及生物学等领域中的许多实际问题通常会归结为常微分方程边值问题的求解。虽然求解常微分方程边值问题有很多解析方法可以求解,但这些方法只能用来求解一些特殊类型的方程,对从实际问题中提炼出来的微分方程往往不再适用,因而对常微分方程边值问题的数值方法的研究显得尤为重要。经典的数值方法主要有:试射法(打靶法)和有限差分法。许多物理现象随着时间而发生变化、如热传导过程、气体扩散过程和波的传播过程都与时间有关。描述这些过程的偏微分方程具有这样的性质;若初始时刻t=t0的解已给定,则t>t0时刻的解完全取决于初始条件和某些边界条件。利用差分
3、法解这类问题,就是从初始值出发,通过差分格式沿时间增加的方向,逐步求出微分方程的近似解。微分方程的定解问题就是在满足某些定解条件下求微分方程的解。在空间区域的边界上要满足的定解条件称为边值条件。如果问题与时间有关,在初始时刻所要满足的定解条件,称为初值条件。不含时间而只带边值条件的定解问题,称为边值问题。与时间有关而只带初值条件的定解问题,称为初值问题。同时带有两种定解条件的问题,称为初值边值混合问题。定解问题往往不具有解析解,或者其解析解不易计算。所以要采用可行的数值解法。有限差分方法就是一种数值解法,它的基本思想是先把问题的定义域进行网格剖分,然后在网格点上,按适当的数值微分公式把定解问题
4、中的微商换成差商,从而把原问题离散化为差分格式,进而求出数值解。此外,还要研究差分格式的解的存在性和唯一性、解的求法、解法的数值稳定性、差分格式的解与原定解问题的真解的误差估计、差分格式的解当网格大小趋于零时是否趋于真解(即收敛性),等等。有限差分方法具有简单、灵活以及通用性强等特点,容易在计算机上实现。二、二阶常微分方程二阶常微分方程一般可表示成如下的形式:, (2.1)边值条件有如下三类9:第一类边值条件, (2.2)第二类边值条件, (2.3)第三类边值条件19, (2.4)其中, , , 。在对边值问题用数值方法求解之前,应该从理论上分析该边值问题的解是否存在,若问题的解不存在,用数值
5、方法计算出来的数据没有任何意义。下面的定理给出了边值问题存在唯一解的充分条件。定理:设方程(2.1)中的函数及,在区域内连续,并且() ;() 在内有界,即存在常数,使得, ,则边值问题(2.1)-(2.4)的解存在且唯一。我们假设函数可以简单地表示成,即边值问题(2.1)-(2.2)为具有如下形式的二阶线性边值问题 (2.5)三、有限差分法:有限差分方法是用于微分方程定解问题求解的最广泛的数值方法,其基本思想是用离散的、只含有有限个未知量的差分方程去近似代替连续变量的微分方程和定解条件,并把相应的差分方程的解作为微分方程定解问题的近似解。有限差分逼近的相关概念设函数光滑,且,利用Taylor
6、展开,可得 (2.19) (2.20)由(2.19)可以得到一阶导数的表达式 (2.21a)或者 (2.21b)同理由(2.20)式可得 (2.22a)或者 (2.22b)其中表示截断误差项.因此,可得一阶导数的的差分近似表达式为 (2.23) (2.24)由(2.21)和(2.22)可知,差商(2.23)和(2.24)逼近微商的精度为一阶,即为,为了得到更精确的差分表达式,将(2.19)减(2.20)可得 (2.25)从而可以的到 (2.26a)或者 (2.26b)其中,.可得一阶导数的差分近似表达式为 (2.27)由此可知,(2.16)差商逼近微商的精度为二阶,即为。类似地,我们还可以给出
7、二阶微商和高阶微商的差分近似表达式。例如将(2.19)和(2.20)两式相加可得进而有 (2.28)其中.因此,二阶导数的差分近似表达式8为 (2.29)实验内容(方法和步骤): 差分法代码如下clc;clear allh=0.05;%x属于【a,b】a=-1;b=1;x=a:h:b;n=length(x);%定义ysyms y;y=(x+2).*(x+2).(-1);hold ongrid onyx=zeros(1,n);yxx=zeros(1,n);for i=2:n-1 yx(i-1)=(y(i+1)-y(i-1)/(2*h); yxx(i-1)=(y(i+1)+y(i-1)-2*y(i
8、)/h2;endplot(x,y,'r','linewidth',2)plot(x(2:n-1),yx(1:n-2),'g','linewidth',2);plot(x(2:n-1),yxx(1:n-2),'b','linewidth',2);legend('原函数','差分一阶导数','差分二阶导数')xlabel('$x$','Interpreter','latex','color',
9、'r','fontsize',28);ylabel('$y$','Interpreter','latex','color','r','fontsize',28);实验结果与分析:差分法结果如下:从图上我们可以看到,可以得到函数图像确实十分接近理论上的解答,差分二阶导数比起差分一阶导数来说,更加接近原函数。差分二阶导数在后面几乎能跟原函数重合,是非常好的求边值问题的方法。我们在整个实验中,感觉最困难的就是对于差分法的理解以及程序的编写上面。我们查询了各种有关于常微分方程边值问题、有限差分法、二阶常微分方程的资料以及论文,差分法实际上就是
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 互联网大数据时代2025年电商平台精准营销策略创新与实践
- 高铁建设对2025年区域环境保护与可持续发展影响评估报告
- 数字艺术展览虚拟现实展示效果优化报告
- 环保产业园2025年循环经济产业园区绿色产业园区绿色园区水资源循环利用报告
- 学校防汛自查工作总结模版
- 新能源与环保行业环保技术市场分析与竞争格局研究
- 2025年客运站春运工作总结模版
- 中心幼儿园网络宣传总结模版
- 企业数字化转型中如何利用区块链重塑信任关系
- 大学物理公式总结模版
- 《药物学》课程教学大纲
- 修改版丝竹相和
- 抗肿瘤药物过敏反应和过敏性休克
- 博物馆学概论:第十讲 数字博物馆
- 排水管道非开挖预防性修复可行性研究报告
- 交通工程基础习习题及参考答案
- RNN+LSTM学习资料课件
- 线路送出工程质量创优项目策划书
- 100T汽车吊性能表
- SOP0420201洁净空调系统清洁消毒预防性维护保养操作规程报告
- 试样切取和加工制备作业指导书
评论
0/150
提交评论