椭圆周长公式的推导_第1页
椭圆周长公式的推导_第2页
椭圆周长公式的推导_第3页
椭圆周长公式的推导_第4页
椭圆周长公式的推导_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、精选优质文档-倾情为你奉上椭圆周长椭圆是个不怎么完美的图形,因为它的面积有确切公式可以计算,但其周长却不能“精确”的计算出来,经过数学家的计算与证明,最终得出椭圆周长没有精确的初等公式,但可以用椭圆积分的级数形式表示。下面对椭圆周长进行的计算,原理很简单,但计算过程可能很复杂。在平面坐标系内椭圆的标准方程为 ,参数方程为 当时,椭圆图像为微积分是个好工具,他帮人类解决了很多复杂问题。这里椭圆周长的计算需要用到定积分的知识。若某条光滑曲线,能用参数方程表示,当时,该段曲线的长度可表示为下面借此公式来计算椭圆的周长,由于椭圆关于坐标原点对称,计算起来比较方便。设椭圆周长为L,则其中,椭圆的离心率。

2、这个积分很难求出来,需要用一定的技巧:先用泰勒公式把展开。当时,可得在此式中令可得其中把式代入式周长L的计算试中后,那个复杂的定积分便能迎刃而解了,所以这个式子还是很复杂,需要把中括号部分进行化简变换一下。先求出把式代入式,周长L就能很快得出来了。于是 这就是椭圆周长的公式,既著名的“项名达公式”,相当的复杂,这应该是最精确的了,另外还有很多的近似公式,不过误差太大,但可以满足工程上的应用。现在科技如此发达,有一些数学软件可以计算出椭圆周长,而且结果相当的准确。计算原理就是定积分的应用,但这个积分不容易求出来,需要有一定的数学能力,有一定的耐心,以及对泰勒公式的应用要求较高。对周长级数形式L进行展开得其中为半长轴,为椭圆的离心率。例如,当椭圆方程为时,则周长为另外有些近似公式作的也很好,例如其实它是根据式近似计算来的,计算精度还行,推导过程有点复杂。椭圆周长的计算方法有很多,这只是其中一种而已,但得到的结果都不“完美”,任然需要科学爱好者努力攻克这个小小的问题。当今尚无标准的椭圆周长计算公式是基础科学中的遗憾之一,现在科学中所使用的椭圆周长都是近似值, 这也是科学的遗憾之一,所以研究椭圆周长计算公式是十分有意义的。认为一个公式的对与错,既有意义也没有意义,因为科学是发展的,科学是循序渐进的过程。科学探索的过程是寂寞而愉快的,但我们

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论