




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、蒙特卡洛与滞后时间集合预报的比较 王丽婧南京信息工程大学大气科学学院,南京210044摘 要:本文首先介绍了集合预报中生成初始扰动的两种方法蒙特卡洛法和滞后时间法,然后利用Lorenz 1963年模式,着重研究蒙特卡洛法和滞后时间法的比较,分别在不同的观测误差大小,不同扰动个数的情况下进行了数值试验研究。数值试验结果表明,在观测误差较小或是在不同扰动个数情况下,在预报初期控制预报和蒙特卡洛法的预报效果要比滞后时间法的预报效果好,而在预报中期滞后时间的预报效果要比蒙特卡洛和控制预报的效果好,预报后期滞后时间和蒙特卡洛预报的效果一样;观测误差较大的时候,滞后时间的预报效果在预报前期和预报中期都比控
2、制预报和蒙特卡洛的效果好,后期两种方法的预报效果一致。关键词:蒙特卡洛;滞后时间;观测误差;扰动个数1 引言集合预报在国际上被认为是最具发展空间的,用来解决确定性数值预报“不确定性”问题的新一代随机动力预报理论和方法。集合预报的概念是由Lorenz在1965年首先提出,就是针对初值的不确定性,尽可能给出能最好的反映初始时刻误差分布的“误差集”(初始扰动),将不同的初始扰动叠加于预报模式的初始场然后分别制作预报,这样,扰动预报与控制预报的全体就称为集合预报1。从集合预报的概念我们可以看出它包含有三项技术问题,分别是初始扰动的生成、数值模式的运用以及预报集合中有用信息的提取,其中主要的一个难点就是
3、初始扰动的生成,因为扰动初值的质量直接影响着模式的预报质量2。目前关于生成初始扰动的方法主要有4种:蒙特卡洛法、增长模繁殖法、时间滞后法和奇异向量法。经典的蒙特卡洛(Monte Carlo)法是Leith3在1974年通过总结Lorenz和Epstein的集合预报观点,然后在他们的基础上发明的,它是在初始观测场上叠加随机扰动,产生多个初始状态的集合,然后通过对集合成员积分得到预报;增长模繁殖 (Breeding of Growing Models) 法是以NCEP为代表,在已有的数值预报模式的基础上,通过模式的繁殖循环求取最快增长模,把最快的增长模作为集合预报的初始扰动;滞后时间(Lagged
4、 Average Forecasting)法4是1983年Hoffman 和Kalnay提出的,它是用相距6小时的数据循环产生相继的分析场作为集合预报的系列初始场,分别作预报然后把相同时刻的求平均;奇异向量(Singular Vector)法是在一定原则下选取切线性模式中若干个奇异向量,其中最大的奇异值对应相应的奇异向量,最大的奇异值就代表增长最快的扰动,再按照一定的要求对这些特征值进行线性组合得到初始扰动5。当今世界上最为有效的集合预报技术分别为,欧洲中心的基于奇异向量分解的集合预报,以及美国NOAA的基于繁殖模培育法的集合预报技术,但作为最简洁的使用方法还是蒙特卡洛和滞后时间法,国内业务上
5、最常使用的动力延伸预报方法也是蒙特卡洛和滞后时间集合预报,但这两种方法的比较还没有系统性的研究。本文的主要目的就是熟悉集合预报的基本概念和基本方法,主要熟悉蒙特卡洛法集合预报和滞后时间集合预报;通过设计试验研究给出两种集合预报方法的定性比较结论,为今后的实际应用和理论研究打下良好的基础。具体做法是利用Lorenz 636年模式利用吸引子提取变量作为初始场,并利用计算机产生随机数来模拟观测误差,在不考虑模式误差情况下,分别在不同观测误差大小和不同扰动个数下用两种方法分别作预报,计算预报均方根,通过预报均方根对两种方法进行比较。2 蒙特卡洛法和时间滞后法介绍经典的蒙特卡洛法认为真实大气中的初始误差
6、是随机分布的。具体做法是:在初始时刻的观测分析场上叠加和扣除不同的随机扰动,从这些具有不同随机扰动的初始场出发分别作预报,然后把这些不同的预报结果求统计平均。集合预报成员的选取和成员个数的确定直接关系到集合预报结果的好坏。按Leith的理论,8个成员足以通过集合预报达到提高预报质量的目的,另外考虑到本文只限理论研究两种方法的比较,所以在试验中成员个数取的较大。滞后时间法的基本思路是取相距6h或12h(取样时间可以自定)的数据同化循环相继产生的分析场作为集合预报的一组初始场,分别对模式积分,最后取相同时刻预报结果的平均值5。其具体做法是在过去(-mp)时刻上叠加以随机扰动,预报到0时刻,再从0时
7、刻预报,然后将所有预报中时间相同的预报求统计平均。3 数值模型及数值试验设计Lorenz1963年系统6如下: dx/dt= -ax +ay dy/dt= rx - y - xz (1) dz/dt= - bz + xy.a, r, b 分别为普朗特数、瑞利数、外形比。其中当a=10,b=2.67,r=24.74时表示的是精确的数值模式。当参数r取不同的值时,会对lorenz系统长期积分产生影响,本文重点在研究蒙特卡洛法和滞后时间法的比较,所以在本次的试验设计中不考虑模式参数误差,将参数都取为固定值a=10,b=2.67,r=24.74。取定X,Y,Z,时间积分方案采用简单的一阶欧拉算法,如下
8、: (2) 分别是方程积分到第n步的值,h是积分步长,本次试验中取为0.01。另外,在本次试验中,我们要考虑不同的观测误差下两种方法的效果对比,而观测误差又具有一定的随机性,所以我们利用计算机产生随机数来模拟观测误差: (3)其中表示无观测误差值,表示有观测误差值,ain是计算机产生的随机数,它的样本平均值为0,均方差为1。dh为观测误差参数,通过改变dh的大小可以控制观测误差的大小,特别当dh=0,即观测误差为零时,与对应相等。接下来进行试验设计:取初始值x、y、z,对初值运行klost步进行适应期计算(klost=5000)得出相应值。接下来继续运行mp步,得到mp个无观测误差的大气状态值
9、,接着通过(3)式给引入观测误差,得到mp个有观测误差的大气状态值。然后用第mp个无观测误差值进行理想试验,取预报步数nstep=3000,所得到的数据作为精确值;方案一:控制预报。用第mp个有误差观测值作为初值,由式(2)预报3000步,作为控制实验,它相对于理想试验得到的精确值可以求出有观测误差情况下各时刻的均方根误差(root mean squared error, RMSE),就得到控制预报的RMSE曲线。 方案二:蒙特卡洛预报。用第mp个有误差观测值作为初值,模式预报3000步,得到初始的有误差的大气状态值。然后利用(3)式,给有误差初始场引入mp个随机扰动,最终我们得到(mp+1)
10、个预报成员,将每一个预报结果累加求平均,就得到蒙特卡洛法预报结果,再将其与理想试验得到的精确值求有观测误差下蒙特卡洛预报的各时刻均方根误差,得到蒙特卡洛预报的RMSE曲线。 方案三:滞后时间预报。取过去 mp时刻的有误差观测值作为初值,利用(2)式对过去mp时刻的观测值积分到0时刻,然后再以积分后的值作为初始值,模式积分3000步。这样循环mp次,得到(mp+1)个预报值,对这(mp+1)个预报值求统计平均,再将其与理想试验得到的精确值求有观测误差下时间滞后法预报的各时刻均方根误差,得到时间滞后预报的RMSE曲线。 在以上三个方案中分别取不同的观测误差大小(改变dh)和不同扰动个数作预报,将所
11、得到的均方根误差值画图,就可以得到不同情况下两种方法效果的比较。4 不同观测误差大小下两种方法效果的比较 为了研究不同的观测误差大小下,蒙特卡洛法和滞后时间法的比较,我们取定mp=10(mp为扰动个数),观测误差参数dh定为变量,取值范围为0.001至6,分别进行控制实验、蒙特卡洛试验和滞后时间试验,通过计算后得到的均方根误差(RMSE)如图1所示: 图1 不同大小观测误差下控制预报、Monte Carlo预报、LAF预报RMSE曲线对比图 控制实验的RMSE Monte Carlo 试验的RMSE LAF试验的RMSE分析图1可以得到,在3000步的预报中,两种方法以及控制预报的预报均方根误
12、差都随着预报步数的增加而增大。在观测误差很小()的时候,前500步内三条RMSE值都比较小基本处在6以下,说明预报刚开始的时候的预报效果还是比较好的。到大约500步以后,控制预报的RMSE值迅速增大到10左右,而Monte Carlo和LAF的RMSE曲线只增大到了7附近。也就是从这时开始可以看出Monte Carlo和LAF的优势。另外当时,预报500步以前LAF的RMSE值大于Monte Carlo的RMSE值,从500到1000步之间,LAF的RMSE值又低于Monte Carlo的RMSE值。为了方便看出预报开始时的比较,下面取dh=0.001、0.005、0.01和0.05,mp取1
13、0,只画出预报前1000步的RMSE曲线。 图2 不同大小观测误差下控制预报、Monte Carlo预报、LAF预报RMSE曲线对比图 (取预报前1000)控制实验的RMSE Monte Carlo 试验的RMSE LAF试验的RMSE 由图2可以看出,预报刚开始的时候(0-第500步左右),LAF的RMSE值最大,也就是它的预报效果最不好,预报一段时间后,LAF的RMSE达到值最小,即它的预报效果达到最好,而Monte Carlo和控制预报的RMSE曲线在前700步时几乎是重合的,到700步以后,Monte Carlo的RMSE值逐渐小于控制预报的RMSE值。说明在预报刚起步时,滞后时间的预
14、报效果不好,而蒙特卡洛的优势也不明显,而到预报中期时,滞后时间的预报效果要优于控制预报和蒙特卡洛预报的。另外可以明显看出,随着观测误差的增大,滞后时间的优势在逐渐提前,当dh取0.1时,在大约预报的第100步滞后时间的均方根误差就已经达到最小了。再看图1,随着观测误差的增大,三种RMSE曲线的值都增大,也就是随观测误差的增大,预报的效果越不好。自dh取0.5往后,从0步积分到400步时,LAF 的RMSE曲线的值总是最小的,在300-400步以后,LAF的RMSE曲线几乎与Monte Carlo的重合。也就是说,随着观测误差的增大,在积分刚开始的时候,LAF的预报效果要比Monte Carlo
15、的预报效果好,在积分一段时间后LAF和Monte Carlo的预报效果一致。另外可以看到,当时,从积分一起步LAF的RMSE曲线值就是最小的,但是因为观测误差增大,所以,预报一开始,它们的RMSE值就很大,为了清晰的看出观测误差较大时三种方法的RMSE曲线分布,下面取dh=1,3,6,且仅画出积分的前500步,结果如图4所示:图3 观测误差取1、3、6时控制预报、Monte Carlo预报、LAF预报RMSE曲线对比图(取积分前500步)控制实验的RMSE Monte Carlo 试验的RMSE LAF试验的RMSE如图3所示,可以看出当观测误差取到一定值时,从积分刚开始LAF集合预报的RMS
16、E值就最小,当积分到一定(约500左右)步时,Monte Carlo和LAF的RMSE曲线才逐渐重合,也就是随着积分步数的增加,LAF的预报效果和Monte Carlo的预报效果一样。同时由于观测误差的增加,两种方法以及控制预报的均方根误差从预报一起步就很大,且均方根误差增大的速度也在加快,当dh取为6时,仅仅在预报的第50步LAF、Monte Carlo以及控制预报的均方根误差就迅速增大到了6-8左右。5 不同扰动个数下两种方法效果的比较由于集合成员的个数对数值结果具有一定的影响,为了研究不同的扰动个数情况下,蒙特卡洛预报和滞后时间预报的效果对比,在试验设计中将dh固定取为0.001,将mp
17、取为变量,取值范围为10至100,10为步长,计算后求出平均均方根误差。得到结果如图4所示:图4 不同大小观测误差下控制预报、Monte Carlo预报、LAF预报RMSE曲线对比图 控制实验的RMSE Monte Carlo 试验的RMSE LAF试验的RMSE由图4可以看出,在观测误差取定为0.001,扰动个数mp由10取到100时,在预报的前900步左右,控制预报和蒙特卡洛的RMSE线基本重合,且在预报的前600步这两种方法预报的均方根误差要比滞后时间预报的均方根误差小,说明在预报最开始的时候,滞后时间的预报效果不好,蒙特卡洛法预报也没有很大的优势;当mp取10至80时,在预报的650-
18、1100步之间,滞后时间的RMSE曲线值最小,蒙特卡洛的RMSE曲线值稍低于控制预报的RMSE值,说明在扰动个数较大,并且预报进行一段时间后,滞后时间法的效果比较明显,要优于蒙特卡洛预报法。而到1000步以后,LAF的RMSE曲线和Monte Carlo的RMSE曲线基本上重合,且比控制预报的RMSE值要小很多。也就是在积分进行到1000步以后,预报的误差加大,两种方法的效果一样。另外,在大约600-1000步之间,随着扰动个数的增加,LAF的RMSE值也逐渐的增大,当mp取到90和100时,从600步开始LAF和Monte Carlo的RMSE曲线就完全重合了,也就是说,扰动数比较小的时候,
19、LAF集合预报的效果比Monte Carlo集合预报的效果要好,但是当扰动数增大到一定值时,LAF预报的优势就体现不出来了。6 总结1)、由以上分析可以得出,两种方法的集合预报以及控制预报的均方根误差都随着积分步数的增加而增大,而蒙特卡洛集合预报的均方根误差除积分刚开始时和控制预报接近外,都小于控制预报的均方根误差;滞后时间集合预报的均方根误差从积分一开始到一定步数时都大于控制预报和蒙特卡洛预报的均方根误差,在积分的中期其均方根误差达到最小。2)、随着观测误差的增大,滞后时间的均方根误差逐渐小于控制预报和蒙特卡洛的均方根误差,当dh增大到一定值时,滞后时间的均方根误差完全小于蒙特卡洛的均方根误
20、差,也就是观测误差增大影响了蒙特卡洛集合预报效果的优势。3)、扰动个数的变化对蒙特卡洛和滞后时间集合预报的效果影响不大,仅在积分6001100步滞后时间的均方根误差增大,逐渐与蒙特卡洛的RMSE曲线重合4)、总体而言,观测误差较小或是在不同扰动个数情况下,在预报初期控制预报和蒙特卡洛法的预报效果要比滞后时间法的预报效果好,而在预报中期滞后时间的预报效果要比蒙特卡洛和控制预报的效果好,预报后期滞后时间和蒙特卡洛预报的效果一样;观测误差较大的时候,滞后时间的预报效果在预报前期和预报中期都比控制预报和蒙特卡洛的效果好,后期两种方法的预报效果一致。5)、本文研究采用了lorenz63混沌模型,使用理想
21、试验的方法进行试验的,不考虑模式误差,实际情况中模式误差很多,情况要比试验中的要复杂的多。另外本文只是理论研究,所以取的扰动个数比较大,但在实际工作中由于计算机时等情况的考虑,扰动个数不能取这么大。7 参考文献1 Lorenz E N. A study of the predictability of 28-variable atmosphere modelJ. Tellus, 1965, 17(3): 321 333.2 王太微,陈德辉.数值预报发展的新方向集合数值预报.气象研究与应用A.2007.28(1):1673-84113 Leith C E. Theoretical skill o
22、f Monte Carlo forecasts. Mon Wea Rev. 1974,102(6): 409418.4 Hoffmann R N, and Kalnay E, Lagged average forecasting, an alternative to Monte Carlo forecasting. Tellus.1983.35A.100118.5 关吉平,黄泓,张立凤.集合预报中初始扰动生成方法的探讨.解放军理工大学学报A.2003.4(4):1009-34436 Lorenz E N. Deterministic nonperiodic flowJ .Journal of
23、The Atmospheric Sciences .1963(1) .20(2):130-141.7 张立凤,牛震宇.基于LAF思想的一种初始扰动生成方法及集合预报试验J.高原气象.2008.27(5):1000-05348 范新岗.集合预报方法的全局研究J. 气象学报.1999.57(1)9 纪飞,董佩明,齐琳琳.一次短期集合预报试验J.气象科学.2005.25(1)10 柳崇健,郑祖光,于玉斌.天气预报技术的若干进展J.气象出版社. 1998.33736411 刘东贤,张庆阳.集合预报及其发展趋势J.中国科技信息.2007.20(268)12 陈静,陈德辉,彦宏.集合数值预报发展与研究进展
24、J. 应用气象学报.2002.13(4)13 Toth ZEstimation of atmospheric predictability by circulation analogsJMon Wea Rev.1991.119(1):657214 杜钧.集合预报的现状和前景J应用气象学报.200213(1):16-2815 毛恒青,王建捷.集合预报业务使用现状和趋势J.国家气象中心.2000.26(6):26-2916 张小礼. 集合预报简介.气象科技.1996(2):9-1317 杨学胜,陈德辉,冷亭波,黄卓.时间滞后与奇异向量初值生成方法的比较试验. 应用气象学报.2002.13(1)18
25、 李俊,杜钧,王明欢,崔春光.中尺度暴雨集合预报系统研发中的初值扰动问题.高原气象.2009.28(6):1000-053419 章国材. 中短期天气集合预报问题. 气象.30(4)20 吴增茂,张新玲.大气系统集合预报方法及应用研究的发展.21 周霞琼,张秀珍,端义宏, 朱永褆. 滞后平均法(LAF)在热带气旋路径集合预报中的应用.气象科学.2003.23(4)The Comparison Between Monte Carlo and the LAF Ensemble ForecastingWang Li Jing(Nanjing University of Information Sci
26、ence & Technology, Atmospheric Science,Nanjing,210044)ABSTRACTThis paper introduces two kinds of initial disturbance generated ensemble prediction methods - Monte Carlo forecasting and the Lagged Average Forecasting. I use Lorenz63 mode to study the comparison of the Monte Carlo method and the lag time method , I carried out numerical experiments at the different observation errors and different samples. Numerical experiments
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 西藏拉萨中学2025届高三适应性调研考试英语试题含解析
- 上海市杨思中学2025届高考考前提分英语仿真卷含解析
- 一轮复习物理版讲义:第六单元+力学实验+含解析
- 智能制造企业如何提高2025年专项补贴资金申请成功率研究报告
- 2025信托资金借贷合同
- 2025年天津市合同监督管理办法已经修订
- 2025版金属材料购销合同范本
- 2025租房合同范本下载版「标准」
- 供应链金融创新与物流金融服务风险管理优化研究报告
- 2025地质机械仪器购销合同范本
- 牛津译林7A-Unit3、4单元复习
- 国家义务教育质量监测初中美术试题
- 超声波探伤作业指导书
- 课程思政视域下小学音乐教学策略初探 论文
- 智能高速铁路概论-课件-第一章-世界智能铁路发展-
- 群众性战伤救治技术知识考试题库-下(多选、判断题部分)
- 黑龙江佳木斯旅游介绍PPT模板
- 中国传统文化之中国古代科技PPT
- 心力衰竭护理业务查房
- 2023部编七年级下册语文生字词总汇
- 黑布林英语阅读(初一年级第1辑套装共6册)赤诚之心翻译
评论
0/150
提交评论