版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、1. 对对 虚数单位虚数单位i 的规定的规定 i 2=-1;可以与实数一起进行四则运算,并且加、乘运算律不变可以与实数一起进行四则运算,并且加、乘运算律不变. 2. 复数复数z=a+bi(其中其中a、b R)中中a叫叫z 的的 、 b叫叫z的的 . 实部实部虚部虚部z为实数为实数 、z为纯虚数为纯虚数 .b=0 00ba课前复习3.1.23.1.2复数的几何意义复数的几何意义在几何上,在几何上,我们用什么我们用什么来表示实数来表示实数?想一想?想一想?类比类比实数的实数的表示,可以表示,可以用什么来表用什么来表示复数?示复数?实数可以用实数可以用数轴数轴上的点来表示。上的点来表示。实数实数 数
2、轴数轴上的点上的点 (形形)(数数)一一对应一一对应 回忆回忆复数的复数的一般形一般形式?式?Z=a+bi(a, bR)实部实部!虚部虚部!一个复数一个复数由什么唯由什么唯一确定?一确定?O思考思考1 : 复数与点的对应复数与点的对应XY() +i ;() +i;() i;() i;() ;() i;GACFOEDBH思考思考2:点与复数的对应点与复数的对应(每个小正方格的边长为1)XY复数复数z=a+bi有序实数对有序实数对(a,b)直角坐标系中的点直角坐标系中的点Z(a,b)xyobaZ(a,b) 建立了平面直角建立了平面直角坐标系来表示复数的坐标系来表示复数的平面平面x轴轴-实轴实轴y轴
3、轴-虚轴虚轴(数)(数)(形)(形)-复数平面复数平面 (简称简称复平面复平面)一一对应一一对应z=a+bi(A)在复平面内,对应于实数的点都在实在复平面内,对应于实数的点都在实 轴上;轴上;(B)在复平面内,对应于纯虚数的点都在在复平面内,对应于纯虚数的点都在 虚轴上;虚轴上;(C)在复平面内,实轴上的点所对应的复在复平面内,实轴上的点所对应的复 数都是实数;数都是实数;(D)在复平面内,虚轴上的点所对应的复在复平面内,虚轴上的点所对应的复 数都是纯虚数。数都是纯虚数。例例1.辨析:辨析:1下列命题中的假命题是(下列命题中的假命题是( )D 2“a=0”是是“复数复数a+bi (a , bR
4、)是纯是纯虚数虚数”的(的( )。)。 (A)必要不充分条件必要不充分条件 (B)充分不必要条件充分不必要条件 (C)充要条件充要条件 (D)不充分不必要条件不充分不必要条件C 3“a=0”是是“复数复数a+bi (a , bR)所对所对应的点在虚轴上应的点在虚轴上”的(的( )。)。 (A)必要不充分条件必要不充分条件 (B)充分不必要条件充分不必要条件 (C)充要条件充要条件 (D)不充分不必要条件不充分不必要条件A例例2 2 已知复数已知复数z=(mz=(m2 2+m-6)+(m+m-6)+(m2 2+m-2)i+m-2)i在复平面内所在复平面内所对应的点位于第二象限,求实数对应的点位于
5、第二象限,求实数m m允许的取值范围允许的取值范围。 表示复数的点所表示复数的点所在象限的问题在象限的问题复数的实部与虚部所满复数的实部与虚部所满足的不等式组的问题足的不等式组的问题转化转化(几何问题几何问题)(代数问题代数问题)一种重要的数学思想:一种重要的数学思想:数形结合思想数形结合思想变式一:变式一:已知复数已知复数z=(mz=(m2 2+m-6)+(m+m-6)+(m2 2+m-2)i+m-2)i在复平面内在复平面内所对应的点在直线所对应的点在直线x-2y+4=0 x-2y+4=0上,求实数上,求实数m m的值。的值。 变式二:变式二:证明对一切证明对一切m m,此复数所对应的点不可
6、能此复数所对应的点不可能位于第四象限。位于第四象限。复数复数z=a+bi复平面内的点复平面内的点Z(a,b)一一对应一一对应平面向量平面向量OZ 一一对应一一对应一一对应一一对应xyobaZ(a,b)z=a+bi小结xOz=a+biy复数的绝对值复数的绝对值 (复数的模复数的模) 的的几何意义几何意义:Z (a,b)22ba 对应平面向量对应平面向量 的模的模| |,即,即复数复数 z=z=a+ +bi i在复平面上对应的点在复平面上对应的点Z(a,b)到原点的到原点的距离。距离。OZ OZ | z | = | |OZ 小结实数绝对值的几何意义实数绝对值的几何意义: :复数的模其实是实数绝对值
7、概念的推广复数的模其实是实数绝对值概念的推广xOAa| |a| = | = |OA| | 实数实数a在数轴上所在数轴上所对应的点对应的点A到原点到原点O的的距离距离. .a aa a(0)(0) xOz= =a+ +biy| |z|=|=|OZ| |复数的模复数的模 复数复数 z= =a+ +bi在复平在复平面上对应的点面上对应的点Z(Z(a, ,b) )到到原点的距离原点的距离.的几何意义的几何意义: :Z(a,b)ab22 例例3 求下列复数的模:求下列复数的模: (1)z1=- -5i (2)z2=- -3+4i (3)z3=5- -5i(2)(2)满足满足|z|=5(zC)|z|=5(
8、zC)的的z z值有几个?值有几个?思考:思考:(1)(1)满足满足|z|=5(zR)|z|=5(zR)的的z z值有几个?值有几个?(4)z4=1+mi(mR) (5)z5=4a- -3ai(a0) 这些复这些复 数对应的点在复平面上构成怎样的图形?数对应的点在复平面上构成怎样的图形? 小结xyO设设z=z=x+yi(x,yRx+yi(x,yR) ) 满足满足|z|=5(zC)|z|=5(zC)的的复数复数z z对应的点在对应的点在复平面上将构成怎复平面上将构成怎样的图形?样的图形?55555|22yxz以原点为圆心以原点为圆心, , 半径为半径为5 5的的圆圆图形图形: :5xyO设设z=
9、z=x+yi(x,yRx+yi(x,yR) ) 满足满足3|z|5(zC)3|z|5(zC)的的复数复数z z对应的点在复对应的点在复平面上将构成怎样的图平面上将构成怎样的图形?形?555533335322yx25922yx图形图形: : 以原点为圆心以原点为圆心, , 半径半径3 3至至5 5的的圆环内圆环内(1)|z(1)|z(1+2i)|(1+2i)|(2)|z+(1+2i)|(2)|z+(1+2i)| 例例4 4 已知复数已知复数z z对应点对应点A,A,说明下列各说明下列各式所表示的几何意义式所表示的几何意义. .点点A A到点到点(1,2)(1,2)的距离的距离点点A A到点到点(
10、 (1, 1, 2)2)的距离的距离(3)|z(3)|z1|1|(4)|z+2i|(4)|z+2i|点点A A到点到点(1,0)(1,0)的距离的距离点点A A到点到点(0, (0, 2)2)的距离的距离例例5 5、设复数设复数z=z=x+yi,(x,yRx+yi,(x,yR),),在下列条件在下列条件下求动点下求动点Z(x,yZ(x,y) )的轨迹的轨迹. . 1.|z-2| 1.|z-2|= =1 1 2.|z-i|+|z+i|=4 2.|z-i|+|z+i|=4 3. 3.|z-2|=|z+4|z-2|=|z+4|x xy yo oZ Z2 2Z ZZ ZZ Z当当|z-z|z-z1 1
11、|=r|=r时时, , 复数复数z z对应的点的轨迹是以对应的点的轨迹是以Z Z1 1对应的点为圆心对应的点为圆心, ,半径为半径为r r的圆的圆. .1 1-1-1Z ZZ ZZ Zy yx xo o|zz1|+|zz2|=2a|z|z1 1z z2 2|2a|2a|2a椭圆椭圆线段线段无轨迹无轨迹y yx xo o2 2-4-4 x=-1x=-1当当| z- z| z- z1 1|= | z- z|= | z- z2 2| |时时, , 复数复数z z对应的点的轨迹是对应的点的轨迹是线段线段Z Z1 1Z Z2 2的的中垂线中垂线. .-1-11 1、|z|z1 1|= |z|= |z2 2| |平行四边形平行四边形OABCOABC是是2 2、| z| z1 1+ z+ z2 2| |= = | z | z1 1- z- z2 2| |平行四边形平行四边形OABCOABC是是3 3、 |z|z1 1|= |z|= |z2 2| |,| z| z1 1+ z+ z2 2| |= =
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 现代物流信息系统架构设计方案
- 社区亲自活动方案
- 社会垃圾分类活动方案
- 社保政策培训活动方案
- 社区参观村史馆活动方案
- 通讯元旦活动方案
- 米线小吃店五一活动方案
- 社区保单检视活动方案
- 音乐游戏教学活动方案
- 鲜花公司沙龙活动方案
- 医疗健康体检服务投标书标准范本
- 建筑公司安全生产责任制度模板
- 滴灌设备相关知识培训课件
- 2025-2026学年冀教版(2024)小学信息技术三年级上册(全册)教学设计(附目录P168)
- 城市燃气设施提升改造工程节能评估报告
- 餐饮服务连锁企业落实食品安全主体责任监督管理规定
- (2025)辅警招聘考试试题库及答案详解(各地真题)
- 房顶吊运防水卷材施工方案
- 支气管哮喘急性发作期护理
- 剪映教学课件
- 生成式人工智能原理及其影响和应用(南开大学)学习通网课章节测试答案
评论
0/150
提交评论