




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、用心想一想,马到功成用心想一想,马到功成 如图,如图,A、B表示两个仓库,要在表示两个仓库,要在A、B一侧的河岸边建一侧的河岸边建造一个码头,造一个码头,使它到两个仓库的距离相等使它到两个仓库的距离相等,码头应建在什,码头应建在什么位置么位置? AB线段垂直平分线的性质:线段垂直平分线的性质: 定理:定理:线段垂直平分线上的点到线段两个端线段垂直平分线上的点到线段两个端点的距离相等点的距离相等 已知:如图,直线已知:如图,直线MNAB,垂足是,垂足是C,且,且AC=BC,P是是MN上的点上的点求证:求证:PA=PBNAPBCM证明:证明:MNAB, PCA=PCB=90 AC=BC,PC=PC
2、, PCA PCB(SAS) ; PA=PB(全等三角形的对应边相等全等三角形的对应边相等) 用心想一想,马到功成用心想一想,马到功成你能写出上面这个定理的逆命题吗你能写出上面这个定理的逆命题吗?它是真命题吗它是真命题吗? 如果有一个点到线段两个端点的距离相等,那么这如果有一个点到线段两个端点的距离相等,那么这个点在这条线段的垂直平分线上即到线段两个端点的个点在这条线段的垂直平分线上即到线段两个端点的距离相等的点在这条线段的垂直平分线上距离相等的点在这条线段的垂直平分线上 已知:线段已知:线段AB,点,点P是平面内一点且是平面内一点且PA=PB求证:求证:P点在点在AB的垂直平分线上的垂直平分
3、线上证明:过点证明:过点P作已知线段作已知线段AB的垂线的垂线PC,PA=PB,PC=PC, RtPAC RtPBC(HL) AC=BC, 即即P点在点在AB的垂直平分线上的垂直平分线上CBPA证法二:取证法二:取AB的中点的中点C,过,过P,C作直线作直线 AP=BP,PC=PC.AC=CB, APC BPC(SSS) PCA=PCB(全等三角形的对应角相等全等三角形的对应角相等) 又又PCA+PCB=180, PCA=PCB=90,即,即PCAB P点在点在AB的垂直平分线上的垂直平分线上CBPA已知:线段已知:线段AB,点,点P是平面内一点且是平面内一点且PA=PB求证:求证:P点在点在
4、AB的垂直平分线上的垂直平分线上CBPA已知:线段已知:线段AB,点,点P是平面内一点且是平面内一点且PA=PB求证:求证:P点在点在AB的垂直平分线上的垂直平分线上证法三:过证法三:过P点作点作APB的角平分线交的角平分线交AB于点于点C AP=BP,APC=BPC,PC=PC, APC BPC(SAS) AC=BC,PCA=PCB 又又PCA+PCB=180PCA=PCB=90 P点在线段点在线段AB的垂直平分线上的垂直平分线上线段垂直平分线的判定:线段垂直平分线的判定: 定理:定理:到线段两个端点的距离相等的点在到线段两个端点的距离相等的点在这条线段的垂直平分线上这条线段的垂直平分线上想一想,做一做想一想,做一做已知:如图已知:如图 1-18,在,在 ABC 中,中,AB = AC,O 是是 ABC 内一点,且内一点,且 OB = OC.求证:直线 AO 垂直平分线段BC课堂小结课堂小结
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 缝纫机结构优化与性能提升考核试卷
- 股票账户资产分配与生物科技产业投资协议
- 互联网金融服务法律补充协议
- 农业无人机电池租赁与无人机植保作业合同
- 金融科技证券分析师助理派遣与区块链技术应用合同
- 儿童图书馆文献资源采购与儿童教育服务协议
- 宠物医院托管运营与品牌合作合同
- 电子商务利用补充协议规范物流配送
- 保险理赔款结算与保险理赔信息化建设协议
- 环保设备工艺保密补充协议书
- 以终为始 育梦成光-初二上期末家长会
- 《哺乳动物尿酸酶重组构建筛选及Cys残基结构功能研究》
- 《货物运输实务》课件 7.2大件物品的运输组织
- 2024版中国质量协会QC小组基础教程(课件99)1
- 某制药公司IT业务持续性计划(BCP)
- 《全面推进依法治国的总目标与原则》参考课件
- 《第1课 身边的数据》参考课件2
- 创业投资管理智慧树知到期末考试答案章节答案2024年武汉科技大学
- 《陆上风力发电建设工程质量监督检查大纲》
- 2024年江苏省常州市新北区常州外国语学校中考一模英语试题(无答案)
- T-CACM 1218-2019 中医骨伤科临床诊疗指南 股骨粗隆间骨折
评论
0/150
提交评论