2018年中考数学复习资料_第1页
2018年中考数学复习资料_第2页
2018年中考数学复习资料_第3页
2018年中考数学复习资料_第4页
2018年中考数学复习资料_第5页
已阅读5页,还剩85页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021/3/91 2018年中考数学年中考数学“数与代数数与代数”领域的复习及建领域的复习及建议议 2021/3/92 研究中考说明研究中考说明 研究中考试题研究中考试题 复习方法建议复习方法建议2021/3/93研究中考说明研究中考说明 一、研究知识技能目标和过程目标一、研究知识技能目标和过程目标 1、了解了解(1)平方根、算术平方根、立方根的概念,会用根号表平方根、算术平方根、立方根的概念,会用根号表示数的平方根、立方根。示数的平方根、立方根。(2)了解开方与乘方互为逆运算,会用平方运算求某些了解开方与乘方互为逆运算,会用平方运算求某些非负数的平方根,会用立方运算求某些数的立方根,非负数

2、的平方根,会用立方运算求某些数的立方根,会用计算器求平方根和立方根。会用计算器求平方根和立方根。(3)了解无理数和实数的概念,知道实数与数轴上的点了解无理数和实数的概念,知道实数与数轴上的点一一对应。一一对应。(4)了解近似数与有效数字的概念;在解决实际问题中,了解近似数与有效数字的概念;在解决实际问题中,能用计算器进行近似计算,并按问题的要求对结果取能用计算器进行近似计算,并按问题的要求对结果取近似值。近似值。2021/3/94(5)了解二次根式的概念及其加、减、乘、除运算法了解二次根式的概念及其加、减、乘、除运算法则,会用他们进行有关实数的简单四则运算。则,会用他们进行有关实数的简单四则运

3、算。(6)了解整数指数幂的意义和基本性质,会用科学计了解整数指数幂的意义和基本性质,会用科学计数法表示数。数法表示数。(7)了解整式的概念,会进行简单的整式加、减运算;了解整式的概念,会进行简单的整式加、减运算;会进行简单的整式乘法运算。会进行简单的整式乘法运算。(8)了解分式的概念,会利用分式的基本性质进行约了解分式的概念,会利用分式的基本性质进行约分和通分,会进行简单分式的加减乘除运算。分和通分,会进行简单分式的加减乘除运算。(9)了解乘法公式的几何背景,并能进行简单计算。了解乘法公式的几何背景,并能进行简单计算。2021/3/95(10)能够根据具体问题的实际意义,列出方程或能够根据具体

4、问题的实际意义,列出方程或方程组并求解,且有意识的检验结果是否合理。方程组并求解,且有意识的检验结果是否合理。(11)能够根据具体问题中的大小关系了解不等式能够根据具体问题中的大小关系了解不等式的意义。的意义。(12)了解常量、变量的意义。能结合实例,了解了解常量、变量的意义。能结合实例,了解函数的概念和三种表示方法。函数的概念和三种表示方法。(13)会画一次函数的图像。会画一次函数的图像。(14)会画反比例函数的图像。会画反比例函数的图像。(15)会画二次函数的图像,能从图像上认识二次会画二次函数的图像,能从图像上认识二次函数的性质。函数的性质。2021/3/96 2、理解和掌握:、理解和掌

5、握:(1)理解有理数的意义,能用数轴上的点表示一理解有理数的意义,能用数轴上的点表示一些实数,会比较实数的大小。些实数,会比较实数的大小。(2)借助数轴理解相反数和绝对值的意义,会求借助数轴理解相反数和绝对值的意义,会求实数的相反数与绝对值。实数的相反数与绝对值。(3)理解乘方的意义,掌握实数的加减乘除乘方理解乘方的意义,掌握实数的加减乘除乘方开平方及简单的混和运算。开平方及简单的混和运算。(4)理解实数的运算律,并能运用运算律简化运理解实数的运算律,并能运用运算律简化运算。算。(5)能运用实数的运算解决简单的问题。能运用实数的运算解决简单的问题。(6)理解用字母表示数的意义理解用字母表示数的

6、意义,能分析简单问题的能分析简单问题的数量关系数量关系,并用代数式表示并用代数式表示。2021/3/97(7)会求代数式的值。会求代数式的值。(8)会推导乘法公式。会推导乘法公式。(9)会用提公因式法,公式法进行因式分解。会用提公因式法,公式法进行因式分解。(10)能根据具体问题中的数量关系列出方程。能根据具体问题中的数量关系列出方程。(11)会解一元一次方程,简单的二元一次方程组,会解一元一次方程,简单的二元一次方程组,可化为一元一次方程的分式方程。可化为一元一次方程的分式方程。(12)会解简单的一元一次不等式,并能在数轴上表会解简单的一元一次不等式,并能在数轴上表示出解集。会解由两个一元一

7、次不等式组成的不示出解集。会解由两个一元一次不等式组成的不等式组。等式组。(13)能确定简单的整式、分式和简单实际问题中的能确定简单的整式、分式和简单实际问题中的函数的自变量取值范围,并会求出函数值。函数的自变量取值范围,并会求出函数值。2021/3/98(14)能根据已知条件确定一次函数的表达式。能根据已知条件确定一次函数的表达式。(15)理解正比例函数。理解正比例函数。(16)会利用一次函数的图像求一元一次方程、二元会利用一次函数的图像求一元一次方程、二元一次方程组的解。一次方程组的解。(17)能根据已知条件确定反比例函数的表达式,理能根据已知条件确定反比例函数的表达式,理解其图像性质。解

8、其图像性质。(18)会利用二次函数的图象估计相应的一元二次方会利用二次函数的图象估计相应的一元二次方程的解的大致范围。程的解的大致范围。2021/3/99 3、灵活运用:、灵活运用:(1)能用一次函数解决实际问题。能用一次函数解决实际问题。(2)能用反比例函数解决某些实际问题。能用反比例函数解决某些实际问题。(3)会根据公式确定图像的顶点、开口方向和对会根据公式确定图像的顶点、开口方向和对称轴,并能解决简单的实际问题。称轴,并能解决简单的实际问题。 4、经历与体验:、经历与体验: (1)能用有理数估计一个无理数的大致范围)能用有理数估计一个无理数的大致范围 (2)能解释一些简单的代数式的实际背

9、景和几)能解释一些简单的代数式的实际背景和几何意义。何意义。 (3)体会方程是刻画现实世界的一个有效的数)体会方程是刻画现实世界的一个有效的数学模型。学模型。2021/3/910(4)经历用观察、画图或计算器等手段估计)经历用观察、画图或计算器等手段估计方程解的过程。方程解的过程。(5)结合具体情境体会一次函数的意义。)结合具体情境体会一次函数的意义。(6)结合具体情境体会反比例函数的意义。)结合具体情境体会反比例函数的意义。(7)通过对实际问题情境的分析确定二次函)通过对实际问题情境的分析确定二次函数的表达式,并体会二次函数的意义。数的表达式,并体会二次函数的意义。 5、探索、探索(1)能对

10、含有较大数字的信息作出合理的解)能对含有较大数字的信息作出合理的解释和推断。释和推断。(2)探索不等式的基本性质。)探索不等式的基本性质。2021/3/911(3)能够根据具体问题中的数量关系,列出)能够根据具体问题中的数量关系,列出一元一次不等式和一元一次不等式组,解一元一次不等式和一元一次不等式组,解决简单的问题。决简单的问题。(4)探索具体问题中的数量关系和变化规律)探索具体问题中的数量关系和变化规律。(5)能结合图像对简单实际问题中的函数关)能结合图像对简单实际问题中的函数关系进行分析。系进行分析。(6)能用适当的函数表示法刻画某些实际问)能用适当的函数表示法刻画某些实际问题中变量之间

11、的关系。题中变量之间的关系。(7)结合对函数关系的分析,尝试对变量的)结合对函数关系的分析,尝试对变量的变化规律进行初步预测。变化规律进行初步预测。(8)根据一次函数的图像和解析表达式探索)根据一次函数的图像和解析表达式探索并理解其性质。并理解其性质。(9)根据反比例函数的图像和解析表达式探)根据反比例函数的图像和解析表达式探索其性质。索其性质。2021/3/912二、研究新旧二、研究新旧说明说明之间的不同之间的不同三、研究三、研究中考说明中考说明中的样题中的样题2021/3/913研究陕西省中考试题研究陕西省中考试题一、试卷结构一、试卷结构二、试题类型二、试题类型三、数与代数部分类型三、数与

12、代数部分类型四、考点分析四、考点分析五、考法分析五、考法分析2021/3/914一、试卷结构一、试卷结构试卷分为卷试卷分为卷和卷和卷两部分:两部分: 卷卷为选择题(为选择题( 1 10) 卷卷为填空题(为填空题(1116) 解答题(解答题(1725) 研究陕西省中考试题研究陕西省中考试题2021/3/915二、试题类型二、试题类型 研究陕西省中考试题研究陕西省中考试题2021/3/916二、试题类型二、试题类型 研究陕西省中考试题研究陕西省中考试题2021/3/917三、数与代数部分类型三、数与代数部分类型 6 研究陕西省中考试题研究陕西省中考试题2021/3/918研究陕西省中考试题研究陕西

13、省中考试题四四、考考 点点 分分 析析2021/3/919题型题型题数及分值题数及分值选择题选择题填空题填空题解答题解答题合合 计计20082008年年5 5(1515分)分)3 3(9 9分)分)3 3(2424分)分)4848分分20092009年年6 6(1818分)分)3 3(9 9分)分)3 3(2323分)分)5050分分20102010年年5 5(1515分)分)3 3(9 9分)分)3 (233 (23分分) )4747分分研究陕西省中考试题研究陕西省中考试题四四. .考考 点点 分分 析析2021/3/920知识点知识点分值百分分值百分比比数与式数与式方程与方程与不等式不等式

14、一次、反比例与二一次、反比例与二次函数次函数合计合计20082008年年3 3分分2.5%2.5%1212分分10%10%3 3分分2.5%2.5%3 3分分2.5%2.5%2727分(分(11+3+1311+3+13)22.5%22.5%4848分分40%40%20092009年年9 9分分7.5%7.5%3 3分分2.5%2.5%8 8分分6.7%6.7%3 3分分2.5%2.5%2727分(分(11+3+1311+3+13)22.5%22.5%5050分分41.7%41.7%20102010年年6 6分分5%5%9 9分分7.5%7.5%3 3分分2.5%2.5%3 3分分2.5%2.5

15、%2727分(分(11+3+1311+3+13)22.5%22.5%4747分分39.2%39.2%四四. .考考 点点 分分 析析2021/3/921(一)数与式1.数五五. .考考 法法 剖剖 析析(10)1|313A. 3 B. -3 C. D.-13(C)2021/3/922(一)数与式1.数 (10)在1,-2, ,0, 五个数中最小的数是 -2 - 3五五. .考法剖析考法剖析2021/3/923 对于数的考查,特别重视基本概念,如相反数、对于数的考查,特别重视基本概念,如相反数、倒数、绝对值、科学记数法、实数、数的大小比较倒数、绝对值、科学记数法、实数、数的大小比较等,基本上是年

16、年考。数的计算侧重于乘方的考查,等,基本上是年年考。数的计算侧重于乘方的考查,同时与探索规律相结合。同时与探索规律相结合。(一)、数与式1.数重点知识年年考,一般知识轮流考。重点知识年年考,一般知识轮流考。思考:怎样轮流考?五五. .考法剖析考法剖析2021/3/924 “数数”的问题首先要全面掌握其概念,如有理数、相反的问题首先要全面掌握其概念,如有理数、相反数、绝对值、倒数及平方根、算术平方根、立方根、科学计数、绝对值、倒数及平方根、算术平方根、立方根、科学计数法等概念,尤其是对负数、无理数的意义,科学记数法与数法等概念,尤其是对负数、无理数的意义,科学记数法与近似数和有效数字都要予以关注

17、,理解概念的内含和外延,近似数和有效数字都要予以关注,理解概念的内含和外延,灵活把握概念的不同表达形式,做到灵活把握概念的不同表达形式,做到“准确准确”和和“灵活灵活”;其次要熟练掌握实数的四则运算,计算则仍控制在简单两个其次要熟练掌握实数的四则运算,计算则仍控制在简单两个有理数或无理数加减乘除、乘方、开方(求平方根、算术平有理数或无理数加减乘除、乘方、开方(求平方根、算术平方根、立方根)运算方根、立方根)运算 ;此外解题时要避免出现含字母的绝;此外解题时要避免出现含字母的绝对值问题不分类考虑、平方根与算术平方根混淆,以及实数对值问题不分类考虑、平方根与算术平方根混淆,以及实数的混合运算中顺序

18、或符号错误等问题。的混合运算中顺序或符号错误等问题。五五. .考法剖析考法剖析2021/3/925(一)、数与式2.式五五. .考法剖析考法剖析(10)计算(计算(-2a)3a的结果是的结果是 (B)A -6a B-6a C12a D6a 2021/3/926(一) 、数与式2.式五五. .考法剖析考法剖析2021/3/927 关于式的运算,整式部分主要考查运算关于式的运算,整式部分主要考查运算的基础的基础合并同类项、幂的运算性质,分合并同类项、幂的运算性质,分式部分主要是分式的意义和化简求值(最稳式部分主要是分式的意义和化简求值(最稳定的题型必考)。因式分解由直接考查到间定的题型必考)。因式

19、分解由直接考查到间接考查,兼顾整体思想。接考查,兼顾整体思想。(一) 、数与式2.式重点知识年年考,一般知识轮流考。重点知识年年考,一般知识轮流考。思考:怎样轮流考?五五. .考法剖析考法剖析2021/3/928(一 ) 、数与式考题中17题的考法(1010)五五. .考法剖析考法剖析2021/3/929 “式式”具有一定的抽象性,复习时要帮助学生理解有关具有一定的抽象性,复习时要帮助学生理解有关概念,计算不要过于繁难。解决这类问题要准确理解和掌概念,计算不要过于繁难。解决这类问题要准确理解和掌握整式和分式的意义、运算性质和法则,特别要准确并熟握整式和分式的意义、运算性质和法则,特别要准确并熟

20、练的掌握完全平方公式、平方差公式和因式分解的方法练的掌握完全平方公式、平方差公式和因式分解的方法. .做做到能灵活地运用运算律对整式和分式进行化简、恒等变形、到能灵活地运用运算律对整式和分式进行化简、恒等变形、代值计算等代值计算等. .解题时要避免出现漏考虑分式有意义的条件、解题时要避免出现漏考虑分式有意义的条件、求值忘记先化简、整式或分式运算中运算顺序或符号错误求值忘记先化简、整式或分式运算中运算顺序或符号错误等问题。等问题。五五. .考法剖析考法剖析2021/3/930(二)、方程与不等式1.方程 五五. .考法剖析考法剖析2021/3/931(二)、方程与不等式1.方程 (1010)五五

21、. .考法剖析考法剖析2021/3/932 方程与方程组的考查,一是考解法,二是方程与方程组的考查,一是考解法,二是典型应用题,三是创设体现方程思想的情境。典型应用题,三是创设体现方程思想的情境。重点知识年年考,一般知识轮流考。重点知识年年考,一般知识轮流考。思考:怎样轮流考?五五. .考法剖析考法剖析2021/3/933 “方程方程”问题首先要准确理解方程和方程的解的意义,其次要问题首先要准确理解方程和方程的解的意义,其次要懂得解方程(组)的基本思路是:消元和降次,而加减消元法、懂得解方程(组)的基本思路是:消元和降次,而加减消元法、代人消元法,分解因式法、换元法,去分母等方法,分别是解二代

22、人消元法,分解因式法、换元法,去分母等方法,分别是解二元一次方程组、一元二次方程和分式方程的常见方法元一次方程组、一元二次方程和分式方程的常见方法. .此外要能此外要能够结合具体问题的实际意义列出方程(组),解决实际问题够结合具体问题的实际意义列出方程(组),解决实际问题. . 解应用题时解应用题时要结合实际背景理解问题,找到列方程的要结合实际背景理解问题,找到列方程的“相等相等关系关系”是关键。不管是与实际相关的问题,还是纯粹的数学问题,是关键。不管是与实际相关的问题,还是纯粹的数学问题,不管是代数方面的问题,还是几何图形方面的问题,乃至更为一不管是代数方面的问题,还是几何图形方面的问题,乃

23、至更为一般化的问题,只要是求未知量数值的问题,不管是怎样的背景下般化的问题,只要是求未知量数值的问题,不管是怎样的背景下和情境中,一般都要借助于方程,这点应让学生知道。和情境中,一般都要借助于方程,这点应让学生知道。五五. .考法剖析考法剖析2021/3/9342.不等式(组)五五. .考法剖析考法剖析2021/3/9352.不等式(组)(1010)五五. .考法剖析考法剖析2021/3/936 以考查不等式(组)的解法为主,或与其它简以考查不等式(组)的解法为主,或与其它简单知识横向综合(如点的坐标、函数性质等),应单知识横向综合(如点的坐标、函数性质等),应用主要结合综合题考查。用主要结合

24、综合题考查。重点知识年年考,一般知识轮流考。重点知识年年考,一般知识轮流考。思考:怎样轮流考?五五. .考法剖析考法剖析2021/3/937 “不等式不等式”问题首先要体会学习不等式(组)和不等式问题首先要体会学习不等式(组)和不等式应用的方法是:类比一元一次方程的解法和应用的相关知识,应用的方法是:类比一元一次方程的解法和应用的相关知识,正确理解不等式的概念和性质,特别是理解和准确运用不等正确理解不等式的概念和性质,特别是理解和准确运用不等式的基本性质式的基本性质3 3,会解简单的一元一次不等式(组),并能,会解简单的一元一次不等式(组),并能在数轴上表示它们的解集;其次能够根据具体问题中的

25、数量在数轴上表示它们的解集;其次能够根据具体问题中的数量关系,列出一元一次不等式(组),并能结合一次函数解决关系,列出一元一次不等式(组),并能结合一次函数解决简单的问题。直接考解法的不等式都很简单,过关训练应以简单的问题。直接考解法的不等式都很简单,过关训练应以相应难度为主,但综合题中求某些量的范围时可能得到较复相应难度为主,但综合题中求某些量的范围时可能得到较复杂的不等式组,复习时应为后面的复习打好基础,可选取部杂的不等式组,复习时应为后面的复习打好基础,可选取部分综合题答案中的不等式组作为练习。分综合题答案中的不等式组作为练习。五五. .考法剖析考法剖析2021/3/938(三)函数1.

26、反比例函数(10)(10)五五. .考法剖析考法剖析2021/3/939规律:规律:几年来,对反比例函数的考查,始终是以填空题的形式几年来,对反比例函数的考查,始终是以填空题的形式出现,给出图象上点的坐标确定函数关系表达式或判断点在图出现,给出图象上点的坐标确定函数关系表达式或判断点在图象上或给出函数表达式考查函数的性质(在每一象限内的增减象上或给出函数表达式考查函数的性质(在每一象限内的增减性),其特点考查基础分值少。(体现按课时比例命题)性),其特点考查基础分值少。(体现按课时比例命题)复习提示:复习提示:本部分知识的复习应坚持这个方向,命题侧重从纯本部分知识的复习应坚持这个方向,命题侧重

27、从纯数学角度考查,数形结合思想和待定系数法仍是关注的重点,数学角度考查,数形结合思想和待定系数法仍是关注的重点,函数图象的分布与函数图象的分布与k k值的关系和增减性也不容忽视。由于反比例值的关系和增减性也不容忽视。由于反比例函数所在位置,与几何图形的结合不要搞得太复杂。函数所在位置,与几何图形的结合不要搞得太复杂。思考:怎样轮流考?五五. .考法剖析考法剖析2021/3/940(三)函数2.一次函数选择、填空题(第8题图)xyOAB23(1010)五五. .考法剖析考法剖析2021/3/941(三)函数3.一次函数解答题五五. .考法剖析考法剖析2021/3/942(三)函数3.一次函数解答

28、题2 2.55(第21题图)120Oy/kmx/h五五. .考法剖析考法剖析2021/3/943(三)函数3.3.一次函数一次函数解答题解答题 21.某蒜薹生产基地喜获丰收收蒜薹某蒜薹生产基地喜获丰收收蒜薹200吨。经市场调查,可采用批发、零售、冷库储藏后销吨。经市场调查,可采用批发、零售、冷库储藏后销售,并按这三种方式销售,计划每吨的售价及成本如下表:售,并按这三种方式销售,计划每吨的售价及成本如下表:销售方式销售方式批发批发零售零售冷库储藏后销售冷库储藏后销售售价(元吨)售价(元吨)300045005500成本(元吨)成本(元吨)70010001200若经过一段时间,蒜薹按计划全部售出后获

29、得利润为若经过一段时间,蒜薹按计划全部售出后获得利润为y(元)蒜薹(元)蒜薹x(吨),且零售是批发量(吨),且零售是批发量的的1/3求求y与与x之间的函数关系;之间的函数关系;1.由于受条件限制经冷库储藏的蒜薹最多由于受条件限制经冷库储藏的蒜薹最多80吨,求该生产基地计划全部售完蒜薹获得最大利润吨,求该生产基地计划全部售完蒜薹获得最大利润。(1010)五五. .考法剖析考法剖析2021/3/944规律:规律:对一次函数的考查,主要是关系式的确定(待定系数对一次函数的考查,主要是关系式的确定(待定系数法)、利用图象和性质把一次函数问题转化为方程和不等式的法)、利用图象和性质把一次函数问题转化为方

30、程和不等式的问题(函数性质)。问题(函数性质)。复习提示:复习提示:几年来一次函数解答题均为实际应用问题,分别以几年来一次函数解答题均为实际应用问题,分别以文字、表格、图象的方式呈现,但解答的问题一般为先确定函文字、表格、图象的方式呈现,但解答的问题一般为先确定函数表达式,再利用解析式解答实际问题。估计数表达式,再利用解析式解答实际问题。估计20112011年也应如此,年也应如此,但问题的实际背景会不同,另外应关注利用性质将问题转化为但问题的实际背景会不同,另外应关注利用性质将问题转化为不等式问题(求范围)。复习时要把性质夯实,会从数和形两不等式问题(求范围)。复习时要把性质夯实,会从数和形两

31、个方面进行分析。通过足够的训练与总结让学生认识到和函数个方面进行分析。通过足够的训练与总结让学生认识到和函数相关的问题只要涉及到求值常需要考虑借助方程,只要涉及到相关的问题只要涉及到求值常需要考虑借助方程,只要涉及到求范围就要考虑不等式。求范围就要考虑不等式。五五. .考法剖析考法剖析2021/3/9454.二次函数选择、填空题五五. .考法剖析考法剖析2021/3/9464.二次函数选择、填空题(1010)五五. .考法剖析考法剖析2021/3/9475.二次函数解答题五五. .考法剖析考法剖析2021/3/9485.二次函数解答题五五. .考法剖析考法剖析2021/3/9495.二次函数解

32、答题五五. .考法剖析考法剖析2021/3/9505.二次函数解答题(1010)五五. .考法剖析考法剖析2021/3/951 几年来二次函数命题主要是构建函数模型几年来二次函数命题主要是构建函数模型并运用函数的概念与性质解决相关的数学问题并运用函数的概念与性质解决相关的数学问题或实际问题,是重要的函数思想与能力的考查,或实际问题,是重要的函数思想与能力的考查,综合性较强。综合性较强。五五. .考法剖析考法剖析2021/3/9521.1.二次函数的考点主要是关系式的建立、图象的选择、对称轴二次函数的考点主要是关系式的建立、图象的选择、对称轴和顶点坐标(配方法)、对称性,函数与一元二次方程关系,

33、和顶点坐标(配方法)、对称性,函数与一元二次方程关系,所以扎实掌握函数性质,熟练解答基础题非常重要。所以扎实掌握函数性质,熟练解答基础题非常重要。2.2.“每每型每每型”问题(营销类应用题)是二次函数建模常见形式,问题(营销类应用题)是二次函数建模常见形式,对于教师已是非常熟悉,但一直是学生理解的难点,练习时要对于教师已是非常熟悉,但一直是学生理解的难点,练习时要首先解决首先解决“每增加每增加1 1元销量就减少元销量就减少n n(单位)(单位)”这样简单的类型,这样简单的类型,然后复杂问题简单化处理。然后复杂问题简单化处理。3.3.以前我们注重由关系式求对称轴和顶点坐标(最值),以前我们注重由

34、关系式求对称轴和顶点坐标(最值),0808年年题建立关系式后,试题最终落到两个二次函数的二次项系数的题建立关系式后,试题最终落到两个二次函数的二次项系数的关系上,这是一个新变化。关系上,这是一个新变化。4.4.由于综合应用题对图象考查不够,所以小题部分以考二次函由于综合应用题对图象考查不够,所以小题部分以考二次函数图象性质为补充,练习时值得注意。数图象性质为补充,练习时值得注意。五五. .考法剖析考法剖析2021/3/953函数类问题的解法函数类问题的解法明意义明意义凡涉及变量之间的对应关系问题就要凡涉及变量之间的对应关系问题就要 考虑借助考虑借助函数,即形成函数,即形成“函数模型函数模型”;

35、定表达式定表达式待定系数法、直接列式法、借助等式导出法待定系数法、直接列式法、借助等式导出法;用性质用性质向方程或不等式转化,用增减性及二次函数、向方程或不等式转化,用增减性及二次函数、反比例函数图象的对称性,以及二次函数图象的顶点坐反比例函数图象的对称性,以及二次函数图象的顶点坐标标. 解答此类问题的关键是正确理解并理顺题目中已知解答此类问题的关键是正确理解并理顺题目中已知和未知之间的关系,综合运用方程中根的性质、不等式和未知之间的关系,综合运用方程中根的性质、不等式的性质和函数图象的有关性质建立关系式,从而达到解的性质和函数图象的有关性质建立关系式,从而达到解决问题的目的。决问题的目的。

36、、五五. .考法剖析考法剖析2021/3/954复习方法及建议一做好详细周密的计划二着力打造高效的复习课堂三加强计算能力的训练和培养四加强复习方法的指导和培养2021/3/955一作好详细周密的计划第一轮:1根据知识体系把整个初中阶段数与代数的内容分为5讲(1)实数 (2)整式(3)分式 (4)二次根式(5)一元方程(6)二元方程组(7)方程及方程组应用(8)不等式(组)(9)不等式(组)的应用(10)函数概念(11)正比例函数及一次函数(12)一次函数的应用(13)反比例函数(14)二次函数一(15)二次函数二2021/3/9562本轮要求 以课本为主突出基础性重视双基 重拾被遗忘知识点的记

37、忆 加深较模糊知识点的理解 巩固提高掌握较好的知识点 2021/3/9573 3通过本轮复习应该达到以下目的通过本轮复习应该达到以下目的知识结构系统化知识结构系统化 基本概念清晰化基本概念清晰化例题习题典型化例题习题典型化 方法技巧规律化方法技巧规律化基本运算准确化基本运算准确化运用数学思想方法自觉化运用数学思想方法自觉化2021/3/958 2021/3/959描述实际问题中变量之间的关系描述实际问题中变量之间的关系函数函数表示方法表示方法性质性质应用应用解析法解析法图像法图像法列表法列表法一次函数一次函数反比例函数反比例函数二次函数二次函数流程流程图法图法2021/3/960第二轮 专题复

38、习1通过本轮复习应该达到以下目的 将第一轮复习的知识点,线结合交织成知识网,注重与现实的联系以达到能力的培养和提高。2021/3/9612.以下专题可供参考第一部分:数学思想与方法第一部分:数学思想与方法专题一:分类讨论思想专题一:分类讨论思想 专题二:整体思想专题二:整体思想专题三:转化思想专题三:转化思想 专题四:数形结合思想专题四:数形结合思想专题五:函数与方程思想专题五:函数与方程思想 专题六:数学建模思想专题六:数学建模思想第二部分:热点题型分类解析第二部分:热点题型分类解析专题七:面积最值问题专题七:面积最值问题 专题八:阅读理解问题专题八:阅读理解问题专题九:开放与探究专题九:开

39、放与探究 专题十:操作实践专题十:操作实践专题十一:动态图形研究专题十一:动态图形研究 专题十二:学科间综合专题十二:学科间综合2021/3/962第三轮 模拟练习本轮目的:基本内容的再次覆盖与强化;基本内容的再次覆盖与强化;解题能力的实际检验与提高;解题能力的实际检验与提高;考试经验的具体积累与丰富考试经验的具体积累与丰富。2021/3/963二、着力打造高效的中考复习课堂 1. 基本知识基本概念习题化 2. 精选精编高质量的例习题 3关注知识之间内在的联系 4深化数学思想方法的理解 5起点低落点高难易有层次2021/3/964 高新一中:刘高新一中:刘 英英 2021/3/965一次函数的

40、概念:一次函数的概念:当当b=0b=0 时时,y=kx+b ,y=kx+b 即为即为 y=kxy=kx, ,此时此时y y是是x x的的正比例函数,所以正比例函数,所以正比例函数是一次函数的正比例函数是一次函数的特例特例. .一般地,形如一般地,形如y=kx+by=kx+b(k,b(k,b为常数,且为常数,且k0k0) )的函数叫做一次函数的函数叫做一次函数. . 温故温故知知新新2021/3/966 121xy xy53 xy32 xy214 3452xy 36 axy123mxy1、下列函数是一次函数的有、下列函数是一次函数的有_2、若函数、若函数 是一次函数,是一次函数,则则m= _ 。

41、-2(1)()(2)()(4)2021/3/967 一次函数一次函数 图图象象 性性质质k0时时y随随x的增大而的增大而_ ,图象必经过,图象必经过 _象限象限k0时时y随随x的增大而的增大而_ ,图象必经过,图象必经过 _象限象限xyxyoxyooxyoxyo00)(0 0 kbkxy000000 xyo减小减小增大增大一、三一、三二、四二、四一次函数的一次函数的图象与图象与性质性质kkbbbbbb常数项常数项_决定一次函数图象与决定一次函数图象与_轴交点的位置轴交点的位置. .by温故温故知知新新2021/3/968._yyy3x2yy4Cy3By2A1321321号连接用的大小的图象上,

42、比较一次函数均在,、,、,、已知点,312yyyxyoC(-4,yC(-4,y3 3) )A(-2,yA(-2,y1 1) )B(3,yB(3,y2 2) )2021/3/9692 2、如图所示的计算程序中,、如图所示的计算程序中,x x与与y y之间的函数关系所对应的图之间的函数关系所对应的图象应为象应为( ) ( ) CBDAD D2021/3/970CBDA3 3、关于、关于x x的一次函数的一次函数 的图象的图象可能正确的是可能正确的是 ( )12kkxyC C2021/3/9714 4、已知函数、已知函数y=kx+by=kx+b的图象的图象如图,则如图,则y=2kx+by=2kx+b

43、的图象可的图象可能是(能是( ) CBDAC C2021/3/972CBDA5 5、函数函数y=ax+by=ax+b和和y=bx+ay=bx+a( )在同一坐标系中的图象可能是(在同一坐标系中的图象可能是( ) 0 abD D2021/3/973待定系数法待定系数法求一次函数解析式的方法求一次函数解析式的方法温故温故知知新新2021/3/974已知:一次函数已知:一次函数y=kx+by=kx+b的图象过点的图象过点A(2,3)A(2,3)、B(-1B(-1,5)5),求此一次函数的解析式。,求此一次函数的解析式。若条件若条件B(-1B(-1,5)5)改为:改为:直线直线y=kx+by=kx+b

44、与直线与直线y=2xy=2x平行平行若条件若条件B(-1B(-1,5)5)改为:改为:直线直线y=kx+by=kx+b与直线与直线y=2x+3y=2x+3交与点(交与点(1 1,5 5)若条件若条件B(-1B(-1,5)5)改为:改为:直线直线y=kx+by=kx+b与两坐标轴与两坐标轴围成的面积是围成的面积是3 32021/3/975一次函数与一元一次不等式一次函数与一元一次不等式( (组):组):解不等式解不等式kxkx+ +b b0 0( (k k,b b是常数,是常数,k k0)0) x x为何值时为何值时函数函数y= kx+by= kx+b的值的值 大于大于0 0 从从“数数”的角度

45、看的角度看求直线求直线y= kx+by= kx+b在在x x 轴上方的部分(射线)轴上方的部分(射线)所对应的的横坐标的所对应的的横坐标的取值范围取值范围 从从“形形”的角度的角度看看温故温故知知新新2021/3/9761 1、一次函数、一次函数y y1 1=k=k1 1x+bx+b的图象如图所示,则的图象如图所示,则关于关于x x的不等式的不等式k k1 1x+bx+b0 0的解集是的解集是_._.x x-2-2 Oyx-24y y1 1=k=k1 1x+bx+b-22 2、如图,若直线、如图,若直线y y2 2=k=k2 2x+cx+c与直线与直线y y1 1=k=k1 1x+bx+b交于(交于(-1-1,2 2),则关于),则关于x x的不的不等式等式k k1 1x+bx+bk k2 2x+cx+c的解集是的解集是_._.x x -1-13 3、若直线、若直线y y2 2=k=k2 2x+cx+c与直线与直线y y1 1=k=k1 1x+bx+b交于(交于(-1-1,2 2),则关于),则关于x x的不等式的不等式-2-2k k1 1x+bx+bk k2 2x+cx+c的解集是的解集是_._.2-1y y2 2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论