




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、软件工程专业毕业论文 精品论文 峰值电流控制PWM升压开关电源IC设计关键词:峰值电流 电流控制 升压开关 开关电源 误差放大器 芯片设计 转换效率摘要:本文分析、设计了一种升压式DC-DC开关电源芯片,它具有转换效率较高、电源工作电压范围比较宽、集成度较高等优点。高集成度、最简片外电路、高效率和低电压是开关电源的开展方向。为了满足各项指标要求,本论文对芯片主电路、控制电路分别进行分析设计,进而确定各个子模块参数并分别对子模块进行设计,最后对整个芯片进行仿真验证。 本文对升压式电源变换器进行全面分析,对电感电流连续与断续两种状态详细分析。又通过对控制系统的分析设计,确定本芯片为峰值电流控制的升
2、压式DC-DC芯片。然后根据所有确定的条件对整个芯片系统进行小信号模型建模,得到系统传递函数,更详细地分析了影响控制系统的各种因素,从而对系统稳定性、相应速度等方面进行更好的设计。 本文对峰值电流控制PWM升压开关电源电路和系统特性进行了详细地分析,采用了电流反响模式、固定频率、脉宽调制PWM架构,以获得快瞬态响应和低噪声。1.2MHZ的高开关频率允许使用扁平电感和陶瓷电容,以满足超薄LCD面板的要求。内置的高效MOSFET和IC的数字软启动功能减少了所需要外部元件的数量。利用外部电阻分压网络,输出可以设定在Vin到13V。利用内部自带的脉冲屏蔽模式操作提高了轻负载条件下的效率,从而进一步降低
3、了功耗。典型工作电路工作在低至1.8V的输入电压,能够输出可达300mA的电流。 本文设计了一款峰值电流控制PWM升压开关电源控制芯片,该芯片采用0.8m CMOS工艺实现,集成有高精度基准电压源、振荡器、斜坡补偿功能电路、电流采样电路、误差放大器、数字软启动、PWM逻辑等电路模块。基于该控制芯片搭建的开关电源可以工作在不同的导电模式下,以满足开关电源应用的要求。同时该开关电源具有输出电压纹波小,转换效率高,良好的瞬态响应性能和负载调整能力等特点。HSPICE仿真结果说明:在芯片典型应用条件下,其输出电压纹波小于±1,转换效率超过85;当负载电流从100mA跃变到250mA,其动态跌
4、落量为0.8,恢复时间仅为125s。正文内容 本文分析、设计了一种升压式DC-DC开关电源芯片,它具有转换效率较高、电源工作电压范围比较宽、集成度较高等优点。高集成度、最简片外电路、高效率和低电压是开关电源的开展方向。为了满足各项指标要求,本论文对芯片主电路、控制电路分别进行分析设计,进而确定各个子模块参数并分别对子模块进行设计,最后对整个芯片进行仿真验证。 本文对升压式电源变换器进行全面分析,对电感电流连续与断续两种状态详细分析。又通过对控制系统的分析设计,确定本芯片为峰值电流控制的升压式DC-DC芯片。然后根据所有确定的条件对整个芯片系统进行小信号模型建模,得到系统传递函数,更详细地分析了
5、影响控制系统的各种因素,从而对系统稳定性、相应速度等方面进行更好的设计。 本文对峰值电流控制PWM升压开关电源电路和系统特性进行了详细地分析,采用了电流反响模式、固定频率、脉宽调制PWM架构,以获得快瞬态响应和低噪声。1.2MHZ的高开关频率允许使用扁平电感和陶瓷电容,以满足超薄LCD面板的要求。内置的高效MOSFET和IC的数字软启动功能减少了所需要外部元件的数量。利用外部电阻分压网络,输出可以设定在Vin到13V。利用内部自带的脉冲屏蔽模式操作提高了轻负载条件下的效率,从而进一步降低了功耗。典型工作电路工作在低至1.8V的输入电压,能够输出可达300mA的电流。 本文设计了一款峰值电流控制
6、PWM升压开关电源控制芯片,该芯片采用0.8m CMOS工艺实现,集成有高精度基准电压源、振荡器、斜坡补偿功能电路、电流采样电路、误差放大器、数字软启动、PWM逻辑等电路模块。基于该控制芯片搭建的开关电源可以工作在不同的导电模式下,以满足开关电源应用的要求。同时该开关电源具有输出电压纹波小,转换效率高,良好的瞬态响应性能和负载调整能力等特点。HSPICE仿真结果说明:在芯片典型应用条件下,其输出电压纹波小于±1,转换效率超过85;当负载电流从100mA跃变到250mA,其动态跌落量为0.8,恢复时间仅为125s。本文分析、设计了一种升压式DC-DC开关电源芯片,它具有转换效率较高、电
7、源工作电压范围比较宽、集成度较高等优点。高集成度、最简片外电路、高效率和低电压是开关电源的开展方向。为了满足各项指标要求,本论文对芯片主电路、控制电路分别进行分析设计,进而确定各个子模块参数并分别对子模块进行设计,最后对整个芯片进行仿真验证。 本文对升压式电源变换器进行全面分析,对电感电流连续与断续两种状态详细分析。又通过对控制系统的分析设计,确定本芯片为峰值电流控制的升压式DC-DC芯片。然后根据所有确定的条件对整个芯片系统进行小信号模型建模,得到系统传递函数,更详细地分析了影响控制系统的各种因素,从而对系统稳定性、相应速度等方面进行更好的设计。 本文对峰值电流控制PWM升压开关电源电路和系
8、统特性进行了详细地分析,采用了电流反响模式、固定频率、脉宽调制PWM架构,以获得快瞬态响应和低噪声。1.2MHZ的高开关频率允许使用扁平电感和陶瓷电容,以满足超薄LCD面板的要求。内置的高效MOSFET和IC的数字软启动功能减少了所需要外部元件的数量。利用外部电阻分压网络,输出可以设定在Vin到13V。利用内部自带的脉冲屏蔽模式操作提高了轻负载条件下的效率,从而进一步降低了功耗。典型工作电路工作在低至1.8V的输入电压,能够输出可达300mA的电流。 本文设计了一款峰值电流控制PWM升压开关电源控制芯片,该芯片采用0.8m CMOS工艺实现,集成有高精度基准电压源、振荡器、斜坡补偿功能电路、电
9、流采样电路、误差放大器、数字软启动、PWM逻辑等电路模块。基于该控制芯片搭建的开关电源可以工作在不同的导电模式下,以满足开关电源应用的要求。同时该开关电源具有输出电压纹波小,转换效率高,良好的瞬态响应性能和负载调整能力等特点。HSPICE仿真结果说明:在芯片典型应用条件下,其输出电压纹波小于±1,转换效率超过85;当负载电流从100mA跃变到250mA,其动态跌落量为0.8,恢复时间仅为125s。本文分析、设计了一种升压式DC-DC开关电源芯片,它具有转换效率较高、电源工作电压范围比较宽、集成度较高等优点。高集成度、最简片外电路、高效率和低电压是开关电源的开展方向。为了满足各项指标要
10、求,本论文对芯片主电路、控制电路分别进行分析设计,进而确定各个子模块参数并分别对子模块进行设计,最后对整个芯片进行仿真验证。 本文对升压式电源变换器进行全面分析,对电感电流连续与断续两种状态详细分析。又通过对控制系统的分析设计,确定本芯片为峰值电流控制的升压式DC-DC芯片。然后根据所有确定的条件对整个芯片系统进行小信号模型建模,得到系统传递函数,更详细地分析了影响控制系统的各种因素,从而对系统稳定性、相应速度等方面进行更好的设计。 本文对峰值电流控制PWM升压开关电源电路和系统特性进行了详细地分析,采用了电流反响模式、固定频率、脉宽调制PWM架构,以获得快瞬态响应和低噪声。1.2MHZ的高开
11、关频率允许使用扁平电感和陶瓷电容,以满足超薄LCD面板的要求。内置的高效MOSFET和IC的数字软启动功能减少了所需要外部元件的数量。利用外部电阻分压网络,输出可以设定在Vin到13V。利用内部自带的脉冲屏蔽模式操作提高了轻负载条件下的效率,从而进一步降低了功耗。典型工作电路工作在低至1.8V的输入电压,能够输出可达300mA的电流。 本文设计了一款峰值电流控制PWM升压开关电源控制芯片,该芯片采用0.8m CMOS工艺实现,集成有高精度基准电压源、振荡器、斜坡补偿功能电路、电流采样电路、误差放大器、数字软启动、PWM逻辑等电路模块。基于该控制芯片搭建的开关电源可以工作在不同的导电模式下,以满
12、足开关电源应用的要求。同时该开关电源具有输出电压纹波小,转换效率高,良好的瞬态响应性能和负载调整能力等特点。HSPICE仿真结果说明:在芯片典型应用条件下,其输出电压纹波小于±1,转换效率超过85;当负载电流从100mA跃变到250mA,其动态跌落量为0.8,恢复时间仅为125s。本文分析、设计了一种升压式DC-DC开关电源芯片,它具有转换效率较高、电源工作电压范围比较宽、集成度较高等优点。高集成度、最简片外电路、高效率和低电压是开关电源的开展方向。为了满足各项指标要求,本论文对芯片主电路、控制电路分别进行分析设计,进而确定各个子模块参数并分别对子模块进行设计,最后对整个芯片进行仿真
13、验证。 本文对升压式电源变换器进行全面分析,对电感电流连续与断续两种状态详细分析。又通过对控制系统的分析设计,确定本芯片为峰值电流控制的升压式DC-DC芯片。然后根据所有确定的条件对整个芯片系统进行小信号模型建模,得到系统传递函数,更详细地分析了影响控制系统的各种因素,从而对系统稳定性、相应速度等方面进行更好的设计。 本文对峰值电流控制PWM升压开关电源电路和系统特性进行了详细地分析,采用了电流反响模式、固定频率、脉宽调制PWM架构,以获得快瞬态响应和低噪声。1.2MHZ的高开关频率允许使用扁平电感和陶瓷电容,以满足超薄LCD面板的要求。内置的高效MOSFET和IC的数字软启动功能减少了所需要
14、外部元件的数量。利用外部电阻分压网络,输出可以设定在Vin到13V。利用内部自带的脉冲屏蔽模式操作提高了轻负载条件下的效率,从而进一步降低了功耗。典型工作电路工作在低至1.8V的输入电压,能够输出可达300mA的电流。 本文设计了一款峰值电流控制PWM升压开关电源控制芯片,该芯片采用0.8m CMOS工艺实现,集成有高精度基准电压源、振荡器、斜坡补偿功能电路、电流采样电路、误差放大器、数字软启动、PWM逻辑等电路模块。基于该控制芯片搭建的开关电源可以工作在不同的导电模式下,以满足开关电源应用的要求。同时该开关电源具有输出电压纹波小,转换效率高,良好的瞬态响应性能和负载调整能力等特点。HSPIC
15、E仿真结果说明:在芯片典型应用条件下,其输出电压纹波小于±1,转换效率超过85;当负载电流从100mA跃变到250mA,其动态跌落量为0.8,恢复时间仅为125s。本文分析、设计了一种升压式DC-DC开关电源芯片,它具有转换效率较高、电源工作电压范围比较宽、集成度较高等优点。高集成度、最简片外电路、高效率和低电压是开关电源的开展方向。为了满足各项指标要求,本论文对芯片主电路、控制电路分别进行分析设计,进而确定各个子模块参数并分别对子模块进行设计,最后对整个芯片进行仿真验证。 本文对升压式电源变换器进行全面分析,对电感电流连续与断续两种状态详细分析。又通过对控制系统的分析设计,确定本芯
16、片为峰值电流控制的升压式DC-DC芯片。然后根据所有确定的条件对整个芯片系统进行小信号模型建模,得到系统传递函数,更详细地分析了影响控制系统的各种因素,从而对系统稳定性、相应速度等方面进行更好的设计。 本文对峰值电流控制PWM升压开关电源电路和系统特性进行了详细地分析,采用了电流反响模式、固定频率、脉宽调制PWM架构,以获得快瞬态响应和低噪声。1.2MHZ的高开关频率允许使用扁平电感和陶瓷电容,以满足超薄LCD面板的要求。内置的高效MOSFET和IC的数字软启动功能减少了所需要外部元件的数量。利用外部电阻分压网络,输出可以设定在Vin到13V。利用内部自带的脉冲屏蔽模式操作提高了轻负载条件下的
17、效率,从而进一步降低了功耗。典型工作电路工作在低至1.8V的输入电压,能够输出可达300mA的电流。 本文设计了一款峰值电流控制PWM升压开关电源控制芯片,该芯片采用0.8m CMOS工艺实现,集成有高精度基准电压源、振荡器、斜坡补偿功能电路、电流采样电路、误差放大器、数字软启动、PWM逻辑等电路模块。基于该控制芯片搭建的开关电源可以工作在不同的导电模式下,以满足开关电源应用的要求。同时该开关电源具有输出电压纹波小,转换效率高,良好的瞬态响应性能和负载调整能力等特点。HSPICE仿真结果说明:在芯片典型应用条件下,其输出电压纹波小于±1,转换效率超过85;当负载电流从100mA跃变到
18、250mA,其动态跌落量为0.8,恢复时间仅为125s。本文分析、设计了一种升压式DC-DC开关电源芯片,它具有转换效率较高、电源工作电压范围比较宽、集成度较高等优点。高集成度、最简片外电路、高效率和低电压是开关电源的开展方向。为了满足各项指标要求,本论文对芯片主电路、控制电路分别进行分析设计,进而确定各个子模块参数并分别对子模块进行设计,最后对整个芯片进行仿真验证。 本文对升压式电源变换器进行全面分析,对电感电流连续与断续两种状态详细分析。又通过对控制系统的分析设计,确定本芯片为峰值电流控制的升压式DC-DC芯片。然后根据所有确定的条件对整个芯片系统进行小信号模型建模,得到系统传递函数,更详
19、细地分析了影响控制系统的各种因素,从而对系统稳定性、相应速度等方面进行更好的设计。 本文对峰值电流控制PWM升压开关电源电路和系统特性进行了详细地分析,采用了电流反响模式、固定频率、脉宽调制PWM架构,以获得快瞬态响应和低噪声。1.2MHZ的高开关频率允许使用扁平电感和陶瓷电容,以满足超薄LCD面板的要求。内置的高效MOSFET和IC的数字软启动功能减少了所需要外部元件的数量。利用外部电阻分压网络,输出可以设定在Vin到13V。利用内部自带的脉冲屏蔽模式操作提高了轻负载条件下的效率,从而进一步降低了功耗。典型工作电路工作在低至1.8V的输入电压,能够输出可达300mA的电流。 本文设计了一款峰
20、值电流控制PWM升压开关电源控制芯片,该芯片采用0.8m CMOS工艺实现,集成有高精度基准电压源、振荡器、斜坡补偿功能电路、电流采样电路、误差放大器、数字软启动、PWM逻辑等电路模块。基于该控制芯片搭建的开关电源可以工作在不同的导电模式下,以满足开关电源应用的要求。同时该开关电源具有输出电压纹波小,转换效率高,良好的瞬态响应性能和负载调整能力等特点。HSPICE仿真结果说明:在芯片典型应用条件下,其输出电压纹波小于±1,转换效率超过85;当负载电流从100mA跃变到250mA,其动态跌落量为0.8,恢复时间仅为125s。本文分析、设计了一种升压式DC-DC开关电源芯片,它具有转换效
21、率较高、电源工作电压范围比较宽、集成度较高等优点。高集成度、最简片外电路、高效率和低电压是开关电源的开展方向。为了满足各项指标要求,本论文对芯片主电路、控制电路分别进行分析设计,进而确定各个子模块参数并分别对子模块进行设计,最后对整个芯片进行仿真验证。 本文对升压式电源变换器进行全面分析,对电感电流连续与断续两种状态详细分析。又通过对控制系统的分析设计,确定本芯片为峰值电流控制的升压式DC-DC芯片。然后根据所有确定的条件对整个芯片系统进行小信号模型建模,得到系统传递函数,更详细地分析了影响控制系统的各种因素,从而对系统稳定性、相应速度等方面进行更好的设计。 本文对峰值电流控制PWM升压开关电
22、源电路和系统特性进行了详细地分析,采用了电流反响模式、固定频率、脉宽调制PWM架构,以获得快瞬态响应和低噪声。1.2MHZ的高开关频率允许使用扁平电感和陶瓷电容,以满足超薄LCD面板的要求。内置的高效MOSFET和IC的数字软启动功能减少了所需要外部元件的数量。利用外部电阻分压网络,输出可以设定在Vin到13V。利用内部自带的脉冲屏蔽模式操作提高了轻负载条件下的效率,从而进一步降低了功耗。典型工作电路工作在低至1.8V的输入电压,能够输出可达300mA的电流。 本文设计了一款峰值电流控制PWM升压开关电源控制芯片,该芯片采用0.8m CMOS工艺实现,集成有高精度基准电压源、振荡器、斜坡补偿功
23、能电路、电流采样电路、误差放大器、数字软启动、PWM逻辑等电路模块。基于该控制芯片搭建的开关电源可以工作在不同的导电模式下,以满足开关电源应用的要求。同时该开关电源具有输出电压纹波小,转换效率高,良好的瞬态响应性能和负载调整能力等特点。HSPICE仿真结果说明:在芯片典型应用条件下,其输出电压纹波小于±1,转换效率超过85;当负载电流从100mA跃变到250mA,其动态跌落量为0.8,恢复时间仅为125s。本文分析、设计了一种升压式DC-DC开关电源芯片,它具有转换效率较高、电源工作电压范围比较宽、集成度较高等优点。高集成度、最简片外电路、高效率和低电压是开关电源的开展方向。为了满足
24、各项指标要求,本论文对芯片主电路、控制电路分别进行分析设计,进而确定各个子模块参数并分别对子模块进行设计,最后对整个芯片进行仿真验证。 本文对升压式电源变换器进行全面分析,对电感电流连续与断续两种状态详细分析。又通过对控制系统的分析设计,确定本芯片为峰值电流控制的升压式DC-DC芯片。然后根据所有确定的条件对整个芯片系统进行小信号模型建模,得到系统传递函数,更详细地分析了影响控制系统的各种因素,从而对系统稳定性、相应速度等方面进行更好的设计。 本文对峰值电流控制PWM升压开关电源电路和系统特性进行了详细地分析,采用了电流反响模式、固定频率、脉宽调制PWM架构,以获得快瞬态响应和低噪声。1.2M
25、HZ的高开关频率允许使用扁平电感和陶瓷电容,以满足超薄LCD面板的要求。内置的高效MOSFET和IC的数字软启动功能减少了所需要外部元件的数量。利用外部电阻分压网络,输出可以设定在Vin到13V。利用内部自带的脉冲屏蔽模式操作提高了轻负载条件下的效率,从而进一步降低了功耗。典型工作电路工作在低至1.8V的输入电压,能够输出可达300mA的电流。 本文设计了一款峰值电流控制PWM升压开关电源控制芯片,该芯片采用0.8m CMOS工艺实现,集成有高精度基准电压源、振荡器、斜坡补偿功能电路、电流采样电路、误差放大器、数字软启动、PWM逻辑等电路模块。基于该控制芯片搭建的开关电源可以工作在不同的导电模
26、式下,以满足开关电源应用的要求。同时该开关电源具有输出电压纹波小,转换效率高,良好的瞬态响应性能和负载调整能力等特点。HSPICE仿真结果说明:在芯片典型应用条件下,其输出电压纹波小于±1,转换效率超过85;当负载电流从100mA跃变到250mA,其动态跌落量为0.8,恢复时间仅为125s。本文分析、设计了一种升压式DC-DC开关电源芯片,它具有转换效率较高、电源工作电压范围比较宽、集成度较高等优点。高集成度、最简片外电路、高效率和低电压是开关电源的开展方向。为了满足各项指标要求,本论文对芯片主电路、控制电路分别进行分析设计,进而确定各个子模块参数并分别对子模块进行设计,最后对整个芯
27、片进行仿真验证。 本文对升压式电源变换器进行全面分析,对电感电流连续与断续两种状态详细分析。又通过对控制系统的分析设计,确定本芯片为峰值电流控制的升压式DC-DC芯片。然后根据所有确定的条件对整个芯片系统进行小信号模型建模,得到系统传递函数,更详细地分析了影响控制系统的各种因素,从而对系统稳定性、相应速度等方面进行更好的设计。 本文对峰值电流控制PWM升压开关电源电路和系统特性进行了详细地分析,采用了电流反响模式、固定频率、脉宽调制PWM架构,以获得快瞬态响应和低噪声。1.2MHZ的高开关频率允许使用扁平电感和陶瓷电容,以满足超薄LCD面板的要求。内置的高效MOSFET和IC的数字软启动功能减
28、少了所需要外部元件的数量。利用外部电阻分压网络,输出可以设定在Vin到13V。利用内部自带的脉冲屏蔽模式操作提高了轻负载条件下的效率,从而进一步降低了功耗。典型工作电路工作在低至1.8V的输入电压,能够输出可达300mA的电流。 本文设计了一款峰值电流控制PWM升压开关电源控制芯片,该芯片采用0.8m CMOS工艺实现,集成有高精度基准电压源、振荡器、斜坡补偿功能电路、电流采样电路、误差放大器、数字软启动、PWM逻辑等电路模块。基于该控制芯片搭建的开关电源可以工作在不同的导电模式下,以满足开关电源应用的要求。同时该开关电源具有输出电压纹波小,转换效率高,良好的瞬态响应性能和负载调整能力等特点。
29、HSPICE仿真结果说明:在芯片典型应用条件下,其输出电压纹波小于±1,转换效率超过85;当负载电流从100mA跃变到250mA,其动态跌落量为0.8,恢复时间仅为125s。本文分析、设计了一种升压式DC-DC开关电源芯片,它具有转换效率较高、电源工作电压范围比较宽、集成度较高等优点。高集成度、最简片外电路、高效率和低电压是开关电源的开展方向。为了满足各项指标要求,本论文对芯片主电路、控制电路分别进行分析设计,进而确定各个子模块参数并分别对子模块进行设计,最后对整个芯片进行仿真验证。 本文对升压式电源变换器进行全面分析,对电感电流连续与断续两种状态详细分析。又通过对控制系统的分析设计,确定本芯片为峰值电流控制的升压式DC-DC芯片。然后根据所有确定的条件对整个芯片系统进行小信号模型建模,得到系统传递函数,更详细地分析了影响控制系统的各种因素,从而对系统稳定性、相应速度等方面进行更好的设计。 本文对峰值电流控制PWM升压开关电源电路和系统特性进行了详细地分析,采用了电流反响模式、固定频率、脉宽调制PWM架构,以获得快瞬态响应和低噪声。1.2MHZ的高开关频率允许使用扁平电感和陶瓷电容,以满足超薄LCD
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 单招畜牧考试题及答案
- 云南财经大学招聘考试真题2024
- 中国润滑材料项目创业计划书
- 大学灯光考试题及答案
- 大队委选举考试题及答案
- 刺灸理论考试题及答案
- 商场租赁协议书
- 中国硫化海绵橡胶制机器及仪器用零件项目创业计划书
- 2025担保公司借款合同模板参考
- 回流焊考试试题及答案
- 海岸生态修复技术-洞察及研究
- 企法法务-销售方案(3篇)
- 变电站调试报告
- 2025-2030年中国铅酸蓄电池行业市场现状供需分析及投资评估规划分析研究报告
- 叮当快药大健康生态圈战略解析
- 塔里木油田分公司新疆塔里木盆地吐孜洛克气田开采矿山地质环境保护与土地复垦方案
- DB21-T1642-2024-镁质耐火原料及制品单位产品能源消耗限额-辽宁省
- 2025年陕西蒲城清洁能源化工有限责任公司招聘笔试参考题库附带答案详解
- 酒店前厅部培训
- GB/T 5453-2025纺织品织物透气性的测定
- 花境培训课件
评论
0/150
提交评论