09-10第一学期09级高数II期末试卷1答案_第1页
09-10第一学期09级高数II期末试卷1答案_第2页
09-10第一学期09级高数II期末试卷1答案_第3页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、福建师范大学协和学院2022 2022学年第一学期2022级高等数学U试卷(A)试卷类别:闭卷考试时间:、单项选择题(本大题共6小题,每题2分,共12分)120分钟1、x e f (x) x e11是(A)函数1A.奇函数 B.偶函数 C. 连续 D.有界2、在指定的变化过程中,以下函数中不是无穷小量的是(si nxB -, (xx1D. xsin ,(xx11A. sin,(x )xx1C. xsin ,(x 0)x3、以下命题中,正确的选项是( D )°6、d :sin(t2 dx 0A. f (x)在(a, b)内的极值点必是f (x)0的点B. f (x)0的点必是f (x)

2、的极值点C. f (x)在(a, b)内的极值点处其导数f (x)必不存在D. f (x)0的点是f (x)可能取极值的点4、假设 f(x)dx xlnx C,那么f(x)= ( A ).Al n x 1 B. ln x5、以下广义积分收敛的是(A.-7 dx B.11)dt ( B )2 2x2x ,2 xx eD.Inx24C2dxC. 20 x2D.2xdxB. sin(x21)C.A )1 dxxA. 2xsin(x22C. 2xsin(x 1)D2 2sin(x 1)cos(x 1)1)cos(x21)、填空题本大题共6小题,每题3分,共18分11、函数fx eZ的间断点x 0的类型

3、是无穷间断点 2 、用微分计算, 吭03的近似值为1.01 计算到百分位e1 (x 1)dxeIn xdx (填“或“)。14、估计dx的值,在区间cos x4,3? 中。ddxsin x 2ln(t21)dt2(cos x)ln(sin x 1)10时总成6、设某产品生产 Q个单位的总本钱为 C Q 100 3Q 0.05Q2,那么产量Q本对产量的弹性为 0.296 三、计算题本大题共7小题,每题6分,共42 分叽 m7;1、解:原式 lim 221 COsx2 分x *0 x &2 胡 1 cosx分11 COSX/cZk 叽 F2 分)x2 t2 e dt0xsin x4.解:原

4、式= lim 2x f 2x(2分)lim 2(1)(1 分)x 0v2x 02 x lim x 0x2lim 2x4x 0 x3、求由方程y xey 1确定的函数y f x的微分dy。解:方程两边都求微分 得2分d y eydx xeydy 03 分dey ddy y dx1 xe4、3 xdx0、x 1解:令t x 1,2分2t2 1 2tdt 1 t那么原式2 2 、 t321 t2 1dt2 分2 332t 1 分2035、Asinhxx x解:原式二-sindS 分x x1cos_x6、0xxedx解:原式lima7、limaa ae0x xea.0 t1 分limd1 分lim0x

5、dex1 分alimax xe0exdx1 分aaea 1 ea1 分1x2 .1dx2x解:令 x si nt t212 -那么原式costdt 2 分sin21 costcsc2tdtcott C1 x2c四、解答题本大题共2小题,每题7分,共14分321、讨论y x 6x 9x 4的单调性、极值点、凹凸性及拐点。解:y 3x212x 93(x2 4x 3)3(x 1)(x 3)令y 0,得x 1,或x 3令y 6x 120,得x 2(4 分)x(,1)1(1,2)2(2,3)3(3,)y+0-0+y-0+y单调增加极大值单调减少凸拐点单调减少凹极小值单调增加(3分)y的单调增加区间为-,

6、1, 3, + 单调减少区间为1, 2 2, 3极大值点为1,极小值点为3,凹区间为-,2凸区间为2, +拐点为2, -22、求由曲线y2 2x,直线y x 4所围成的平面图形的面积412解:面积二 2y 4 2y2dy6分18五、证明题本大题共1小题,每题7分,共7分1 2试证:当 x 0时,x x Inx 1 x。2解:令fx ln1 x x,那么f x在0, x上连续,在0,x内可导 由拉格朗日中值定理1分得 0,x使得fx f 0 f x 0即 ln(x1)Q011In (x(2分)1)令 g(x)=xln(x1那么gx 0,x上连续,在0,x内可导1x 1g(x)在0, x上单调减少,(2分)g(x) g(0)1 2 /彳x x ln(12那么 g ( x)=1-xx)六、应用题本大题共1小题,每题7分,共7分假设某种商品的需求量Q是价格p 单位:元的函数:Q 24000 160 p,商品的总成本C是需求量的函数:C50000 100Q,每单位商品需纳税4元,试求使销售利润最大的商品价格和最大利润。解:利润 L p =pQ-C 4Qp24000 160 p 50000 10024000160 p 424000160 p160

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论