中考数学解题技巧_第1页
中考数学解题技巧_第2页
中考数学解题技巧_第3页
中考数学解题技巧_第4页
中考数学解题技巧_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、中考数学解题技巧1、配方法所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。2、因式分解法因式分解,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘

2、法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。3、换元法换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。4、待定系数法在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。它是中学数学中常用的方法之一5、判别式法与韦达定理一元二次方程ax2+bx+c=0(a、b、c属

3、于R,a0)根的判别,=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。6、构造法在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称

4、为构造法。运用构造法解题,可以使代数、三角、几何等各种数学知识互相渗透,有利于问题的解决。7、反证法反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法。反证法可以分为归谬反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种)。用反证法证明一个命题的步骤,大体上分为:(1)反设;(2)归谬;(3)结论。反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小

5、)于;都是/不都是;至少有一个/一个也没有;至少有n个/至多有(n一1)个;至多有一个/至少有两个;唯一/至少有两个。归谬是反证法的关键,导出矛盾的过程没有固定的模式,但必须从反设出发,否则推导将成为无源之水,无本之木。推理必须严谨。导出的矛盾有如下几种类型:与已知条件矛盾;与已知的公理、定义、定理、公式矛盾;与反设矛盾;自相矛盾。8、面积法平面几何中讲的面积公式以及由面积公式推出的与面积计算有关的性质定理,不仅可用于计算面积,而且用它来证明平面几何题有时会收到事半功倍的效果。运用面积关系来证明或计算平面几何题的方法,称为面积方法,它是几何中的一种常用方法。用归纳法或分析法证明平面几何题,其困

6、难在添置辅助线。面积法的特点是把已知和未知各量用面积公式联系起来,通过运算达到求证的结果。所以用面积法来解几何题,几何元素之间关系变成数量之间的关系,只需要计算,有时可以不添置补助线,即使需要添置辅助线,也很容易考虑到。9、几何变换法在数学问题的研究中,常常运用变换法,把复杂性问题转化为简单性的问题而得到解决。所谓变换是一个集合的任一元素到同一集合的元素的一个一一映射。中学数学中所涉及的变换主要是初等变换。有一些看来很难甚至于无法下手的习题,可以借助几何变换法,化繁为简,化难为易。另一方面,也可将变换的观点渗透到中学数学教学中。将图形从相等静止条件下的研究和运动中的研究结合起来,有利于对图形本

7、质的认识。几何变换包括:(1)平移;(2)旋转;(3)对称。10.客观性题的解题方法选择题是给出条件和结论,要求根据一定的关系找出正确答案的一类题型。选择题的题型构思精巧,形式灵活,可以比较全面地考察学生的基础知识和基本技能,从而增大了试卷的容量和知识覆盖面。填空题是标准化考试的重要题型之一,它同选择题一样具有考查目标明确,知识复盖面广,评卷准确迅速,有利于考查学生的分析判断能力和计算能力等优点,不同的是填空题未给出答案,可以防止学生猜估答案的情况。要想迅速、正确地解选择题、填空题,除了具有准确的计算、严密的推理外,还要有解选择题、填空题的方法与技巧。下面通过实例介绍常用方法。(1)直接推演法

8、:直接从命题给出的条件出发,运用概念、公式、定理等进行推理或运算,得出结论,选择正确答案,这就是传统的解题方法,这种解法叫直接推演法。(2)验证法:由题设找出合适的验证条件,再通过验证,找出正确答案,亦可将供选择的答案代入条件中去验证,找出正确答案,此法称为验证法(也称代入法)。当遇到定量命题时,常用此法。(3)特殊元素法:用合适的特殊元素(如数或图形)代入题设条件或结论中去,从而获得解答。这种方法叫特殊元素法。(4)排除、筛选法:对于正确答案有且只有一个的选择题,根据数学知识或推理、演算,把不正确的结论排除,余下的结论再经筛选,从而作出正确的结论的解法叫排除、筛选法。(5)图解法:借助于符合

9、题设条件的图形或图象的性质、特点来判断,作出正确的选择称为图解法。图解法是解选择题常用方法之一。(6)分析法:直接通过对选择题的条件和结论,作详尽的分析、归纳和判断,从而选出正确的结果,称为分析法.1、合并同类项合并同类项,法则不能忘,只求系数和,字母、指数不变样。2、恒等变两个数字来相减,互换位置最常见,正负只看其指数,奇数变号偶不变。(a-b)2n+1=-(b-a)2n+1(a-b)2n=(b-a)2n3、平方差公式平方差公式有两项,符号相反切记牢,首加尾乘首减尾,莫与完全公式相混淆。4、完全平方完全平方有三项,首尾符号是同乡,首平方、尾平方,首尾二倍放中央;首±尾括号带平方,尾

10、项符号随中央。5、因式分解一提(公因式)二套(公式)三分组,细看几项不离谱,两项只用平方差,三项十字相乘法,阵法熟练不马虎,四项仔细看清楚,若有三个平方数(项),就用一三来分组,否则二二去分组,五项、六项更多项,二三、三三试分组,以上若都行不通,拆项、添项看清楚。6、“代入”口决挖去字母换上数(式),数字、字母都保留;换上分数或负数,给它带上小括弧,原括弧内出(现)括弧,逐级向下变括弧(小中大)7、单项式运算加、减、乘、除、乘(开)方,三级运算分得清,系数进行同级(运)算,指数运算降级(进)行。8、一元一次不等式解题的一般步骤去分母、去括号,移项时候要变号,同类项、合并好,再把系数来除掉,两边

11、除(以)负数时,不等号改向别忘了。9、一元一次不等式组的解集大大取较大,小小取较小,小大,大小取中间,大小,小大无处找。10、一元二次不等式、一元一次绝对值不等式的解集大(鱼)于(吃)取两边,小(鱼)于(吃)取中间。11、分式混合运算法则分式四则运算,顺序乘除加减,乘除同级运算,除法符号须变(乘);乘法进行化简,因式分解在先,分子分母相约,然后再行运算;加减分母需同,分母化积关键;找出最简公分母,通分不是很难;变号必须两处,结果要求最简。12、分式方程的解法步骤同乘最简公分母,化成整式写清楚,求得解后须验根,原(根)留、增(根)舍别含糊。13、最简根式的条件最简根式三条件,号内不把分母含,幂指

12、(数)根指(数)要互质,幂指比根指小一点。14、特殊点坐标特征坐标平面点(x,y),横在前来纵在后;(+,+),(-,+),(-,-)和(+,-),四个象限分前后;X轴上y为0,x为0在Y轴。15、象限角的平分线象限角的平分线,坐标特征有特点,一、三横纵都相等,二、四横纵确相反。16、平行某轴的直线平行某轴的直线,点的坐标有讲究,直线平行X轴,纵坐标相等横不同;直线平行于Y轴,点的横坐标仍照旧。17、对称点坐标对称点坐标要记牢,相反数位置莫混淆,X轴对称y相反,Y轴对称,x前面添负号;原点对称最好记,横纵坐标变符号。18、自变量的取值范围分式分母不为零,偶次根下负不行;零次幂底数不为零,整式、

13、奇次根全能行。19、函数图像的移动规律若把一次函数解析式写成y=k(x+0)+b、二次函数的解析式写成y=a(x+h)2+k的形式,则用下面后的口诀“左右平移在括号,上下平移在末稍,左正右负须牢记,上正下负错不了”20、一次函数图像与性质口诀一次函数是直线,图像经过仨象限;正比例函数更简单,经过原点一直线;两个系数k与b,作用之大莫小看,k是斜率定夹角,b与Y轴来相见,k为正来右上斜,x增减y增减;k为负来左下展,变化规律正相反;k的绝对值越大,线离横轴就越远。中考倒计时40天,初三孩子们紧张复习的同时也要清楚今年各科重点考察哪部分,孩子有针对性的复习才能在中考中取得胜利!数学经过紧张而又艰苦

14、的几个月的复习准备后,同学们将要走进考场,实现自己的愿望。但是能否将自己的实际水平如实地在考卷上全面正确地反映出来,除了要有扎实的知识功底外,学生还应掌握应考的一些复习策略。考前怎样复习首先,要抓住基础概念,将其作为技巧突破口。数学试题中的所谓解题技巧其实并不是什么高深莫测的东西,它来源于最基础的知识和概念,是掌握到一定程度时的灵光一现。要寻找差异因为做了大量雷同的练习,所以容易造成对相近试题的判断失误,这是非常危险的。其次,要抓住常用公式,理解其来龙去脉。这对记忆常用数学公式是很有帮助的。此外,还要进一步了解其推导过程,并对推导过程中产生的一些可能变化进行探究,这样做胜过做大量习题,并可以使

15、自己更好地掌握公式的运用,往往会有意想不到的效果。再次,要抓住中考动向,勤练解题规范。很多学生认为,只要解出题目的答案就能拿到满分了。其实,由于新课程改革的不断深入,中考越来越注重解题过程的 规范和解答过程的完整,只要是有过程的解答题,过程比最后的答案要重要得多。所以,要规范书写过程,避免“会而不对”、“对而不全”的情形。最后,要抓住数学思想,总结解题方法。中考中常出现的数学思想方法有分类讨论法、面积法、特值法、数形结合法等,运用变换思想、方程思想、函数思想、 化归思想等来解决一些综合问题,在脑海中将每一种方法记忆一道对应的典型试题,并有目的地将较综合的题目分解为较简单的几个小题目,做到举一反

16、三,化繁为 简,分步突破;而在与同学的合作学习中,要将较为简单的题组合成较有价值的综合题。中考题最大的特点是浅、宽、新、活,因而,在复习中要回避繁、难、偏、 怪的题,否则,一方面浪费时间,另一方面也会增加心理负担。处理好几个关系1、审题与解题的关系先审好题,再做题。有些问题要从题目中挖掘隐含条件,启发解题思路,如果题审不好,条件挖掘得不深,就可能会审错题。只有耐心仔细地审题,准确地把握题目中的关键词与量,从中获取尽可能多的信息,才能迅速找准解题方向。2、“会做”与“得分”的关系要求会做的题要拿满分,不会做的题要争取拿分。如何得分,主要靠准确完整的数学语言表述,必要的步骤不能省去,会多少写多少。

17、只有重视解题过程的严密推理和精确计算,才能保证拿到分。3、“快”与“准”的关系在目前题量大、时间紧的情况下,“准”尤为重要。“快”则是平时训练的结果。因此,平时做题,既要做到“准”又要做到“快”,而不是只要做对即可。4、难题与易题的关系一般来说,无论什么样的考试,在拿到试卷后,应将全卷通读一遍,按先易后难、先简后繁的顺序作答。但由于中考通常是按照由易到难 的顺序排列,一般是分为三个由易到难排列,选择题、填空题、解答题,所以,要尽量按照试题的先后顺序来解答。遇到不会的问题可以先跳过,不能在一道问题上 花费太多时间,否则容易导致后面的题还没有看时间就结束了。平时做题时要控制好时间,以免中考时出现时

18、间不够用的现象。注重良好习惯培养另外,随着中考时间的临近,还应注重良好习惯的培养与提升:1、速度。考试是向时间要质量,复习时一定要有速度意识,不能只要质量而不要数量和速度,超时间的投入就是一种“潜在丢分”,如在考场上发现时间不够,就会乱了阵脚,导致后面的题无法思维,无法下手解答,全部丢分。2、计算。中考历来重视运算能力,虽然近年来试题的计算量略有降低,但并未削弱对计算能力的要求,运算要熟练、准确、简捷、迅速,要与推理相结合,要合理且简单。3、表达。在以中低档题型为主体的考试中,获得正确的思路相对容易,但要如何准确而规范地表达就显得更为重要了。在最后的综合复习中要注意书写要求, 特别是做完历年的中考题后不能万事大吉

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论