下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、圆形磁场中的几个典型问题一做就错.常见问题.对于这些问题,针对具许多同学对带电粒子在圆形有界磁场中的运动问题常常无从下手,分别是“最值问题、会聚发散问题、边界交点问题、周期性问题体类型,抓住关键要素,问题就能迎刃而解,下面举例说明.一、最值问题的解题关键一一抓弦长1 .求最长时间的问题例1真空中半径为R=3Xl0-2m的圆形区域内,有一磁感应强度为B=0.2T的匀强磁场,方向如图1所示一带正电的粒子以初速度vo=106m/s从磁场边界上直径ab一端a点处射入磁场,该粒子比荷为q/m=108C/kg,不计粒子重力,假设要使粒子飞离磁场时偏转角最大,其入射时粒子初速度的方向应如何?以VoOa的夹角
2、e表示最长运动时间多长?小结:此题涉及的是一个动态问题,即粒子虽然在磁场中均做同一半径的匀速圆周运动,但因其初速度方向变化,使粒子运动轨迹的长短和位置均发生变化,并且弦长的变化一定对应速度偏转角的变化,同时也一定对应粒子做圆周运动轨迹对应圆心角的变化,因而当弦长为圆形磁场直径时,偏转角最大.图32 .求最小面积的问题例2带电质点的质量为m,电量为q,以平行于Ox轴的速度v从y轴上的a点射人如图3所示第一象限的区域.为了使该质点能从x轴上的b点以垂直于x轴的速度v射出,可在适当的地方加一个垂直于xoy平面、磁感应强度为B的匀强磁场.假设此磁场仅分布在一个圆形区域内,试求此圆形磁场区域的最小面积,
3、重力忽略不计.小结:这是一个需要逆向思维的问题,而且同时考查了空间想象水平,即粒子运动轨迹求所加圆形磁场的位置.解决此类问题时,要抓住粒子运动的特点即该粒子只在所加磁场中做匀速圆周运动,所以粒子运动的1/4圆弧必须包含在磁场区域中且圆运动起点、终点必须是磁场边界上的点,然后再考虑磁场的最小半径.上述两类“最值问题,解题的关键是要找出带电粒子做圆周运动所对应的弦长.二、会聚发散问题的解题关键一一抓半径当圆形磁场的半径与圆轨迹半径相等时,存在两条特殊规律;规律一:带电粒子从圆形有界磁场边界上某点射入磁场,如果圆形磁场的半径与圆轨迹A乙半径相等,那么粒子的出射速度方向与圆形磁场上入射点的切线方向平行
4、,如甲图所示.、-X年义规律二:平行射入圆形有界磁场的相同带电粒V桧k对一子,如果圆形磁场的半径与圆轨迹半径相等,那么所7有粒子都从磁场边界上的同一点射出,并且出射点甲的切线与入射速度方向平行,如乙图所示.困5例3如图5所示,x轴正方向水平向右,y轴正方向竖直向上.在半彳仝为R的圆形区域内加一与xoy平面垂直的匀强磁场.在坐标原点O处放置一带电微粒发射装置,它可以连续不断地发射具有相同质量m、电荷量qq>0且初速为Vo的带电粒子,不计重力.调节坐标原点O处的带电微粒发射装置,使其在xoy平面内不断地以相同速率Vo沿不同方向将这种带电微粒射入x轴上方,现要求这些带电微粒最终都能平行于x轴正
5、方向射出,那么带电微粒的速度必须满足什么条件?小结:研究粒子在圆形磁场中的运动时,要抓住圆形磁场的半径和圆周运动的半径,建立二者之间的关系,再根据动力学规律运动规律求解问题.三、边界交点问题的解题关键一抓轨迹方程例4如图7所示,在xoy平面内x>0区域中,有一半圆形匀强磁场区域,圆心为O,半径为R=0.10m,磁感应强度大小为B=0.5T,磁场方向垂直xoy平面向里.有一线斗粒子源放在y轴""*'左侧图中未画出,并不断沿平行于x轴正方向释放出电荷量为5.一厂q=+1.6X10-19C,初速度vo=1.6X106m/s的粒子,粒子的质量"y为m=1.0
6、X10-2%,不考虑粒子间的相互作用及粒子重力,求:卜1从y轴任意位置0,y入射的粒子离开磁场时的坐标.由7点评:带电粒子在磁场中的运动是最能反映抽象思维与数学方法相结合的物理模型,本题那么利用圆形磁场与圆周运动轨迹方程求交点,是对初等数学的抽象运用,能较好的提升学生思维.四、周期性问题的解题关键一一寻找圆心角图91 .粒子周期性运动的问题例5如图9所示的空间存在两个匀强磁场,其分界线是半径为R的圆,两侧的磁场方向相反且垂直于纸面,磁感应强度大小都为B.现有一质量为m、电荷量为q的带正电粒子不计重力从A点沿aA方向射出.求:1假设方向向外的磁场范围足够大,离子自A点射出后在两个磁场不断地飞进飞
7、出,最后又返回A点,求返回A点的最短时间及对应的速度.2假设向外的磁场是有界的,分布在以O点为圆心、半径为R和2R的两半圆环之间的区域,上述粒子仍从A点沿QA方向射出且粒子仍能返回A点,求其返回A点的最短时间.2 .磁场发生周期性变化两块正对的平行金属板水平放置.在两IIr例6如图12所示,在地面上方的真空室内,板之间有一匀强电场,场强按如图13所示规律变化沿y轴方向为正方向在两板正中间有一圆形匀强磁场区-域,磁感应强度按图14所示规律变化,如果建立如图12所示的坐标系,在-t=0时刻有一质量m=9.0X10-9kg、电荷量q=9.0X10-6c的带正电的小球,以vo=1m/s的初速度沿y轴方
8、向从O点射入,分析小球在磁场中的运动并确定小球在匀强磁场中的运动时间及离开时的位置坐标.B/X10*图14小结:对于周期性问题,由于粒子运动轨迹和磁场边界都是圆,所以要充分利用圆的对称性及圆心角的几何关系,寻找运动轨迹的对称关系和周期性.五、磁场问题的规律前面分析的六个典型例题,其物理情景各异,繁简不同,但解题思路和方法却有以下四个共同点.(1)物理模型相同即带电粒子在匀强磁场中均做匀速圆周运动.(2)物理规律相同即洛伦兹力提供运动的向心力,通常都由动力学规律列方程求解.(3)数学规律相同即运用几何知识求圆心角、弧长、半径等物理量.(4)解题关键相同:一是由题意画出正确轨迹;二是寻找边界圆弧和
9、轨迹圆弧的对应圆心角关系;三是确定半径和周期,构建适宜的三角形或平行四边形,再运用解析几何知识求解圆的弦长、弧长、圆心角等,最后转化到题目中需求解的问题.【同步练习】1 .如下图,在半彳5为R的圆形区域内充满磁感应强度为B的匀强磁场,MN是一竖直放置的感光板.从圆形磁场最高点P垂直磁场射入大量的带正电,电荷量为q,质量为m,速度为v的粒子,不考虑粒子间的相互作用力,关于这些粒子的运动以下说法正确的选项是()A.只要对着圆心入射,出射后均可垂直打在MN上B.对着圆心入射的粒子,其出射方向的反向延长线不一定过圆心C.对着圆心入射的粒子,速度越大在磁场中通过的弧长越长,时间也越长qBRD.只要速度满
10、足v=*,沿不同方向入射的粒子出射后均可垂直打在MN上2 .如下图,长方形abcd的长ad=0.6m,宽ab=0.3m,O、e分别是ad、bc的中点,以e为圆心eb为半径的四分之一圆弧和以.为圆心Od为半径的四分之一圆弧组成的区域内有垂直纸面向里的匀强磁场(边界上无磁场)磁感应强度B=0.25T.一群不计重力、质量m=3X10-7kg、电荷量q=+2X103C的带正电粒子以速度v=5X12m/s沿垂直ad方向且垂直于磁场射人磁场区域,那么以下判断正确的选项是()A.从Od边射入的粒子,出射点全局部布在Oa边B.从aO边射入的粒子,出射点全局部布在ab边C.从Od边射入的粒子,出射点分布在ab边
11、D.从ad边射人的粒子,出射点全部通过b点3、一质量为册、带电量为0的粒子以速度北从O点沿/轴正方向射入磁感强度为B的一圆形匀强磁场区域,磁场方向垂直于纸面,粒子飞出磁场区后,从轴正向夹角为30°,如图1所示(粒子重力忽略不计).试求:(1)圆形磁场区的最小面积;(2)粒子从O点进入磁场区到达8点所经历的时间;(3)6点的坐标.4、在xoy平面内有许多电子(质量为册、电量为S),从坐标O不断以相同速率九沿不同方向射入第一象限,如下图.现加一个垂直于xzy平面向内、磁感强度为3的匀强磁场,要求这些电子穿过磁场后都能平行于轴向I正方向运动,求符合该条件磁场的最小面积.5.如下图,在坐标系
12、xoy内有一半径为a的圆形区域,圆心坐标为Oi(a,0),圆内分布有垂直纸面向里的匀强磁场,在直线y=a的上方和直线x=2a的左侧区域内,有一沿x轴负方向的匀强电场,场强大小为E,一质量为m、电荷量为+q(q>0)的粒子以速度v从O点垂直于磁场方向射入,当入射速度方向沿x轴方向时,粒子恰好从Oi点正上方的A点射出磁场,不计粒子重力,求:(1)磁感应强度B的大小;(2)粒子离开第一象限时速度方向与y轴正方向的夹角;(3)假设将电场方向变为沿y轴负方向,电场强度大小不变,粒子以速度v从.点垂直于磁场方向、并与x轴正方向夹角9=30°射入第一象限,求粒子从射入磁场到最终离开磁场的总时
13、间to6 .如下图的直角坐标系中,从直线x=-2l°至1Jy轴区域存在两个大小相等、方向相反的有界匀强电场,其中x轴上方的电场方向沿y轴负方向,x轴下方的电场方向沿y轴正方向.在电场左边界从A(-21°,-l°)点到C(-21°,°)点区域内,连续分布着电量为+q、质量为m的粒子.从某时刻起,A点到C点间的粒子依次连续以相同速度V0沿x轴正方向射入电场.从A点射入的粒子恰好从y轴上的A'(0,-lo)点沿沿x轴正方向射出电场,其轨迹如下图.不计粒子的重力及它们间的相互作用.(1)求从AC间入射的粒子穿越电场区域的时间t和匀强电场的电场强
14、度E的大小.(2)求在A、C间还有哪些坐标位置的粒子通过电场后也能沿x轴正方向运动?(3)为便于收集沿x轴正方向射出电场的所有粒子,假设以直线x=2lo上的某点为圆心的圆形磁场区域内,设方t分布垂直于xOy平面向里的匀强磁场,使得沿x轴正方向射出电场的粒子经磁场偏转后,都能通过x=2lo与圆形磁场边界的一个交点.那么磁场区域最小半径是多大?相应的磁感应强度B是多大?7 .如下图,在xoy坐标系中分布着三个有界场区:第一象限中有一半径为r=0.1m的圆形磁场区域,磁感应强度Bi=1T,方向垂直纸面向里,该区域同时与x轴、y轴相切,切点分别为A、C;第四象限中,由y轴、抛物线FG(y=10x2+x
15、0.025,单位:m)和直线B2=0.5T.现有大量质量m=1X10-6DH(y=x0.425,单位:m)构成的区域中,存在着方向竖直向下、强度E=2.5N/C的匀强电场;以及直线DH右下方存在垂直纸面向里的匀强磁场kg(重力不计),电量大小为q=2X10-4C,速率均为20m/s的带负电的粒子从A处垂直磁场进入第一象限,速度方向与y轴夹角在0至1800之间.(1)求这些粒子在圆形磁场区域中运动的半径;(2)试证实这些粒子经过x轴时速度方向均与x轴垂直;(3)通过计算说明这些粒子会经过y轴上的同一点,并求出该点坐标.8 .如下图,半圆有界匀强磁场的圆心Oi在x轴上,OOi距离等于半圆磁场的半径
16、,磁感应强度大小为Bi.虚线MN平彳tx轴且与半圆相切于P点.在MN上方是正交的匀强电场和匀强磁场,电场场强大小为E,方向沿x轴负向,磁场磁感应强度大小为B2oB1?B2方向均垂直纸面,方向如下图.有一群相同的正粒子,以相同的速率沿不同方向从原点O射入第I象限,其中沿x轴正方向进入磁场的粒子经过P点射入MN后,恰好在正交的电磁场中做直线运动,粒子质量为m,电荷量为q粒子重力不计.求:(1)(2)(3)粒子初速度大小和有界半圆磁场的半径.假设撤去磁场B2,那么经过P点射入电场的粒子从y轴出电场时的坐标.试证实:题中所有从原点O进入第I象限的粒子都能在正交的电磁场中做直线运动.9 .如下图,真空中
17、一平面直角坐标系xOy内,存在着两个边长为L的正方形匀强电场区域I、n和两个直径为L的圆形磁场区域出、Wo电场的场强大小均为E,区域I的场强方向沿x轴正方向,其下边界在x轴上,右边界刚好与区域n的边界相切;区域n的场强方向沿y轴正方向,其上边界在x轴上,左边界刚好与刚好与区域IV的边界相切.磁场的磁感应强度大小均为212mE,区域出的圆心坐标为0,L、磁场方向垂直于xOy平面向外;区域IV的圆心1qL2坐标为0,-2、磁场方向垂直于xOy平面向里.两个质量均为m、电荷量均为q的带正电粒子M、N,在外力约束下静止在坐标为3L,上、-L,/3L的两点.在2224x轴的正半轴坐标原点除外放置一块足够
18、长的感光板,板面垂直于xOy平面.将粒子M、N由静止释放,它们最终打在感光板上并立即被吸收.不计粒子的重力.求:1粒子离开电场I时的速度大小.2粒子M击中感光板的位置坐标.3粒子N在磁场中运动的时间.10.一质量为m、电荷量为+q的粒子以速度v0,从O点沿y轴正方向射入磁感应强度为B的圆形匀强磁场区域,磁场方向垂直纸面向外,粒子飞出磁场区域后,从b处穿过x轴,速度方向与x轴正方向的夹角为30,同时进入场强为E、方向沿与x轴负方向成60角斜向下的匀强电场中,通过了b点正下方的c点,如下图,粒子的重力不计,试求:(1)圆形匀强磁场区域的最小面积;(2)c点至ijb点的距离.xOy平面向里的匀强磁场My11.如图甲所示,质量m=8.0M0-25kg,电荷量q=1.61015C的带正电粒子从坐标原点.处沿xOy平面射入第一象限内,且在与x方向夹角大于等于30°的范围内,粒子射入时的速度方向不同,但大小均为V0=2.0X07m/s.现在某一区域内加一垂直于磁感应强度大小B=0.1T,假设
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论