




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、Chap.7 强子结构的夸克模型1第七章第七章 强子结构强子结构的夸克模型的夸克模型 Chap.7 强子结构的夸克模型2 强子有内部结构的实验证据 v质子和中子都有反常磁矩 ve/p弹性散射给出核子的电磁形状因子,并给出核子的尺度 0.8fmve/p深度非弹性散射表明核子由一些类点的颗粒组成 Chap.7 强子结构的夸克模型37.1 强子态的产生强子态的产生 v粒子和粒子的碰撞来产生新的强子态 形成实验: 生成实验: AahAa dchAaBbChap.7 强子结构的夸克模型47.1.1 重子共振态的形成重子共振态的形成 介子和核子发生碰撞 散射 : : I=1 , N: I =1/2 I=1
2、/2 N* 或 I=3/2 对 的轨道角动量的不同(不同分波)和能量的不同,可以形成不同自旋和不同质量的共振态 (初态粒子的量子态有严格的限制) ()N,00nhnphppphnChap.7 强子结构的夸克模型5v(1232) 当(,N)的不变质量为M(,N)=1232MeV时,形成截面达到极大 ,具有峰的结构 .它可以由(+,p),(+, n),(-,p),(-,n)来形成,即其电荷态包括h+,h+,h0,h-,是电荷的四重态,I3= 3/2,1/2,-1/2,-3/2,说明该重子共振态为I=3/2的四重态,称为(1232)v N(1440) M(,N)=1440MeV时, I=1/2的同位
3、旋两重态, 即: N(1440) 只能通过 初态来形成 v通过对共振态衰变末态的角分布的研究,可以推断构成共振态的介子相对于核子的轨道角动量以及共振态的总角动量 对于J=3/2, l=1, 宇称 记(1232)为P33(, ) (, )np,J( 1)( 1) ( 1)1lP Chap.7 强子结构的夸克模型6表7.1 共振态与核子共振态Chap.7 强子结构的夸克模型72 (K, N)散射 I=0 共振态 ; I=1 共振态Chap.7 强子结构的夸克模型87.1.2矢量介子的产生和形成矢量介子的产生和形成 新的强子态,不管它们的量子数是怎样的取值,都有可能通生成实验 来产生 : 1974年
4、,丁肇中领导的研究小组,利用28GeV的质子打Be靶,试图寻找未知的新的矢量介子,发现了J/粒子 1977年, FermiLab 400GeV P 打Be, 通过末态+ -对, 发现了更重的矢量介子(10GeV) 1984年, 450GeV 质子-反质子对撞, M(e+,e-)90GeV, 发现Z0中间玻色子XVBepeeGeVMee1 . 3Chap.7 强子结构的夸克模型97.1.3通过强子通过强子强子碰撞产生各种新的强子态强子碰撞产生各种新的强子态v通过对末态产物的分析,如对泡室径迹的重建确定奇异重子的产生以及它们的质量,并根据守恒定律确定它们的守恒量子数;v由衰变顶点(次级顶点)相对于
5、产生点(原初顶点)的分布,确定新的强子态的寿命; v通过对强子态的衰变产物的(运动学)重建来确认新的强子态的存在v通过对衰变产物角分布(分波)分析来确定强子态的自旋和宇称 00000ppppp Chap.7 强子结构的夸克模型107.2 7.2 强子谱和强子结构的夸克模型强子谱和强子结构的夸克模型7.2.1 强子谱,强子在强子谱,强子在Y-I3二维图上的分布的规律性二维图上的分布的规律性 a. 重子谱重子谱Chap.7 强子结构的夸克模型11Chap.7 强子结构的夸克模型12J=3/2+和J=1/2+重子在Y-I3图上的排列 Chap.7 强子结构的夸克模型13b. 介子谱 Chap.7 强
6、子结构的夸克模型14 图上的排列介子在和3)(1)(0ISbJaJChap.7 强子结构的夸克模型15v强作用过程,同位旋守恒,即在同位旋空间转动具有不变性。所有强子系统的同位旋态都可以用同位旋空间中的两个最基本的基矢来构造: 各种核素的同位旋自由度,可以用质子和中子来构成。 p = n = SU(2)对称性 对含奇异数的强子, 定义超荷 Y=B+S,基本表示必须扩大为三个基矢的空间,对称性由 SU(2)扩展为 基矢:310110122II ,0110YIUSU) 1 ()2(超荷UY(1)、同位旋SU(2)是表征强子的基本的自由度Chap.7 强子结构的夸克模型16具有高维表示的强子可以用u
7、,s,d三个基矢或者其共轭基矢 来构造 Chap.7 强子结构的夸克模型17 1961年,强子的结构模型,三个基矢成为三种不同“味”的夸克 a. Gell-Mann: Quark b. Zweig: Ace赋予夸克的重子数B=1/3, Gell-Mann-Nishijima关系 夸克电荷(1/3)e整数倍 32QYIeChap.7 强子结构的夸克模型18 重子(B=1)和介子(B=0)的组合方式 v重子的最简单的组成应是由三个味道的夸克来组合,按SU(3) 群的构造,可以有下面的组合方式: 即:一个十维的不可约表示(味的SU(3)的10重态),两个8维表示(味的SU(3)的8重态)和一个味SU
8、(3)的单态。 v介子的最简单的组成是由一个夸克和另一个反夸克组合 : 即:一个味的SU(3)介子八重态和一个味的SU(3)介子单态 33310881 1833Chap.7 强子结构的夸克模型19味SU(3)对称群的每个不可约表示(多重态)的成员和相应的一组粒子对应v人们观察到的强子按味SU(3)群的不可约表示(多重态)分类;v每一个强子对应某一不可约表示(多重态)的一个分量,具有相应的量子数I, I3和超荷Y或S;v同一不可约表示(多重态)的粒子具有相似的性质。例如强相互作用的守恒量子数自旋和宇称Jp相同。味SU(3)对称性的扩展,把具有不同 同位旋多重态,不同超荷但具有相同的Jp的强子放在
9、同一不可约表示中,即与SU(3)味对称性对应的相互作用(有时称其为超强相互作用)不区分同位旋,也不区分超荷。v同一不可约表示(多重态)的粒子质量m可以有所差别,这种差别是由SU(3)味对称性的破缺所引起的;v若找到一个不可约表示的一个粒子或几个粒子,该表示的未知粒子也一定存在。 v Chap.7 强子结构的夸克模型207.3 重子的味多重态7.3.1 重子的味重子的味10重态重态 味10重态的波函数交换的对称性1()()31()()3ssuuudddsssdduuddduddduuudduuududuu,1() ()61() ()31() ()31() ()31() ()3sssssdsu u
10、ds sud sdu dus usdusddds sdd dsdddsuus suu usuuusdss ssd sdsdssuss ssu susussChap.7 强子结构的夸克模型21 重子的味SU(3)十重态 Y-I3二维图预言了(1962年)Y=-2, S=-3的sss态, 即后来(1964年)发现的-Chap.7 强子结构的夸克模型22Xp0V-O:YXV-1:02()3VYZVZp0010113S320Chap.7 强子结构的夸克模型23vSU(2)对称性,把u,d看成全同的费米子,SU(3)味对称性把u,d,s看成全同的费米子。由它们构成的重子的波函数,应该满足“全同”费米子交
11、换反对称的要求。v根据量子力学束缚态理论,系统的最低能量态,其空间部分波函数(由相对运动轨道角动量来描述)具有最大可能的对称性即粒子1和2的相对运动轨道角动量l=0,粒子3相对于粒子(1,2)的轨道角动量l=0。因此,不管是味的10重态或者是8重态。它们基态的轨道角动量总是l=0 , l=0, 总L=0,空间部分波函数是交换完全对称的。 自旋普通空间味重子|LChap.7 强子结构的夸克模型24v粒子的自旋完全是由3个自旋为1/2的夸克来组合。对于SU(3)味10重态,J=3/2,三个夸克的自旋波函数具有交换完全对称的特性,它们的构造方式 : 违背全同费米子交换反对称的要求! 至少必须引入一个
12、新的自由度(量子数) ,由这自由度所构成的三个夸克的波函数对这个自由度的交换必须是反对称的。这自由度就是“色”,即每种夸克具有种颜色:红(R),绿(G),蓝(B) 33311|()22223 ,; ,31133|() |22223 ,; ,味道、空间和自旋部分波函数对夸克交换都对称!Chap.7 强子结构的夸克模型25构成SU(3)色三维最基础表示。所有观测到的重子都应该是色的单态(即色的交换反对称)构成重子波函数中的三粒夸克的色部分波函数应该是:夸克具有“色荷”,它是夸克之间相互作用的“源”,就像电荷是电磁作用的“源”一样:QCD (Quantum ChromoDynamics ): 强作用
13、的动力学 “色禁闭” : 所有观测到的强子都是色单态,或者说是色中性。 1()610BSSSASRGBRBGBRGBGRGBRGRBFlavourObitalSpinColourChap.7 强子结构的夸克模型267.3.3 味的SU(3)重子八重态v “味”部分的波函数具有部分交换反对称,部分交换对称。它们可以有两种独立的构造方式, (1,2) 或 (2,3)交换反对称; J=1/2uChap.7 强子结构的夸克模型27v对于味8重态。色部分的波函数也要求是交换反对称的,因为所有实际可观测到的粒子都是色的单态.v作为基态重子的8重态,夸克的空间部分波函数具有完全的对称性。即: l=l=L=0
14、 。为了得到自旋J=1/2的8重态的重子,三个夸克的自旋只能构成部分反对称。v为了保证八重态的重子总波函数具有交换反对称。只有令排序1,2的夸克自旋反称和味道反称组合在一起或者排序2,3的夸克的自旋反称和味道反称组合在一起。 11()|,22211()|,222 Chap.7 强子结构的夸克模型28vSU(3)味8重态的自旋和味道波函数:v质子为:(下面的点表示相应的序号的夸克对应的量子数构成交换反称) = = = )()()()()()(32(1313232312128flaverspinflaverspinflaverspin重子)21,21:| P)(2132uududu)(21)(21
15、uudduuududuu21,21:| P1(2)(2)3 2uududu (2)duu )()()()()()()()()(2231duuduuduu)()()()()()()()()(2uduuduudu)()()()()()()()()(2uuduuduudChap.7 强子结构的夸克模型29v在 平面上,味8重态如下 3IY 如何区分08(),()BSASASAASASObitalSpinFlavourColoursududsChap.7 强子结构的夸克模型307.4 介子的SU(3)多重态三种味道的夸克 u,d,s 和三种味道的反夸克 uds-bar可以组合成9种介子态: 8重态 和
16、单态3381dusudsdusdusdusudsudsudsChap.7 强子结构的夸克模型318重态单态Chap.7 强子结构的夸克模型32v7.4.1赝标介子和矢量介子由夸克(费米子)和反夸克(反费米子)构成的系统,根据它们的轨道运动状态,径向运动状态和自旋状态可以构成不同的多种多样的介子态。空间宇称,电荷共轭宇称(如果是纯中性的系统)和G宇称: v赝标介子赝标介子 1. 介子的基态,当组成夸克反夸克的 (用符号 表示)时对应一组 的介子,称为赝标介子。 1( 1),( 1),( 1)LL SL S IpcG 0, 0SL01S 0PJChap.7 强子结构的夸克模型33Chap.7 强子
17、结构的夸克模型34v矢量介子矢量介子v 当组成夸克和反夸克的当组成夸克和反夸克的 ,对应着另一组,对应着另一组介子,称为矢量介子。介子,称为矢量介子。 )( 1, 013表示用符号 SSLChap.7 强子结构的夸克模型357.4.2 单态和8重态的第8分量的混合Chap.7 强子结构的夸克模型36将在 表示的质量矩阵对角化,可以推出混合角 : 分别为实际观察到的介子和介子的质量。M8可以由Gell-Mann-Okubo公式(page 37)推出, 解得 用 和 的波函数代入,得到和 的夸克组成: 80,2282228MMtgMMMM,*22281(4)3MMM 408008801(2) 31
18、()(2) 32ssdduu0808sincoscossin2sin351/3cos35 3 Chap.7 强子结构的夸克模型37Chap.7 强子结构的夸克模型387.5 强子的质量和强子的磁矩7.5.1 味对称破缺即Gell-Mann-Okubo质量分裂公式v 同一味SU(3)多重态中的强子(重子或者介子),质量很不相同,这只能用味SU(3)的对称性的破缺来说明,这种破缺仍然保持了同位旋的SU(2)以及超荷U(1)的对称性,同样同位旋(不同分量),同一超荷的一组粒子,其质量基本相同。对称性的破缺使得多重态成员的质量随着超荷而变化,随着粒子的总同位旋而变化。v Gell-Mann-Okubo
19、给出质量分裂公式: 重子: 介子: 4) 1(),(2YIICBYAIYM22 (1)4YmabYc I IChap.7 强子结构的夸克模型39500MeV140MeV500MeV890MeV770MeV890MeVChap.7 强子结构的夸克模型40v同一多重态中的介子和反介子,有完全相同的质量,但它们的超荷Y(=S)相反。可见介子的质量公式中的Y的一次项不能存在,即b=0,所以对于介子,上式改写为: v根据质量分裂公式,可以得到 的重子的质量应满足: v赝标介子的质量应满足: v按照上述质量关系,可以由8 重态中的已知质量推出第8分量m8的质量,例如对于矢量介子: 4) 1(22SIIca
20、m12PJ)(23MMMMN222843MmM*22281(4)3mmmChap.7 强子结构的夸克模型417.5.2 色荷的精细相互作用引起的强子质量的精细劈裂 v考察介子的不同SU(3)的8重态,发现夸克反夸克的组成味相同,基态轨道角动量相同,只是相对自旋取向不同而质量不同:v重子 : 中子v质量差很容易和原子体系的自旋轨道相互作用,或者是自旋之间的相互作用(精细和超精细劈裂)类比来加以说明 )(01Sdu)140(MeVm )(13Sdu(770)MMeVSAudd,)()939(MeVm Sudd)()1236(0MeVm Chap.7 强子结构的夸克模型42v氢原子,处于基态的电子
21、的自旋 和质子的自旋 相互作用引起的能级劈裂由下式表示:v组成强子系统的夸克都具有“色荷”,可以想象与夸克自旋对应的形成一个具有强相互作用特征的“色矩”。这种色矩与构成强子的夸克(反夸克)的自旋态直接相关,它们的相互作用形式 介子 重子 21 2SeSpS220028()|(0)|3pepnepg eESSm m ceVE610875. 52002121)0()4(98,nsAmmSSAE132312121323()SSSSSSEAm mm mm m200)4(94nsAChap.7 强子结构的夸克模型43v简单认为,强子的质量是由构成它的夸克的质量再加上 上述色偶极矩附加能 :v组成夸克的质
22、量分别选为: v由上式和实验测得的介子质量( 和 )拟合,给出参数: 121212(SSMmmAm m介子)2222212122111334() (1)3244 204JSSJSSJ JJ2310cMeVmmdu2483cMeVms10S31S221602cMeVmAuChap.7 强子结构的夸克模型44Chap.7 强子结构的夸克模型45231312123122313()SSS SS SMmmmAmmm mmm重子)122313SSSSSS)(212322212SSSJ22233(10)942( (1)3124(8)42JJ JJ重态重态AmmMAmmMAmmMssuuuuN22222243
23、3433433=v当3组成夸克质量都一样时 (如: 核子, (3u,d), (3s)J1/2J=3/2J=3/2Chap.7 强子结构的夸克模型46v由不同味道组成的重子10重态,J=3/2,自旋交换完全对称(uds)S 从而v8重态的 , (uds)AS 2222()22ijijijSSSSS S212231314SSSSSS)21(42)21(422222*susussuusummmAmmMmmmAmmM222()24ududSSSS ,223()04ududSSSS ,Jij=1(J2-si2-sj2)Chap.7 强子结构的夸克模型47 = =对于(含2个s夸克,它们构成自旋三重态 )
24、,在公式中,将s和u交换一下就得到了的质量: M1223132()2ududusuusSSSSSSSSSSmmAmm m)41(4222suusummmAmm22324usuAMmmm)41(4222sususmmmAmmM2348重态Chap.7 强子结构的夸克模型48v参数 A的拟合:取组成夸克质量 , 和10重态,8重态的重子质量公式拟合,最佳参数为: 363udnmmmMeV538smMeV22502cMeVmAu三个参数,8种重子质量Chap.7 强子结构的夸克模型497.5.3 中子和质子的磁矩 v假定,夸克和轻子一样是类点的粒子,它们是自旋为1/2的,具有电荷为Qi e的粒子,它
25、们的磁矩为: 00223 2uuuuuuuQ eemm 00123 2dddddddQ eemm 00123 2sssssssQ eemm 1231111,2222pChap.7 强子结构的夸克模型50质子自旋波函数 Chap.7 强子结构的夸克模型51v对于头一行第一项 : v对于头一行第二项:v对于头一行第三项: 第一行总贡献为: )()()(duu20012322( ) ( ) ( )( ) ( ) ( )(2)932uduuduud2012311( ) ( ) ( )|( ) ( ) ( )183 2duuduud 0181d000182)2(92dduChap.7 强子结构的夸克模型
26、52v第二,三 行贡献的磁矩和第一列的贡献是一样的 , 总之:v而中子只是质子中u,d夸克互换而已, 因此:v设: 及: 有: )4(3191)2(92 300000duddup)4(3100udnndummm0000022313nnundnem 00000032929431313234nnnnnnnpChap.7 强子结构的夸克模型53v综上得: 实验结果:v假定: 并引入核磁子 则: 理论值 实验值23np exp0.684979npMeVmmmndu336N02.7922pnNnmemm2.792pNNp793. 2Nn862. 1Nn913. 1Chap.7 强子结构的夸克模型547.
27、6 重味夸克的发现和重夸克偶素 7.6.1 J/粒子的发现和桀夸克的引入 时间: 1974年夏 地点: BNL- AGS 人物: S. C . C. Ting and his group 实验: 28GeV p 打Be靶 末态e+e-不变质量中心值: 3.10GeV 宽度 5MeV 同年 11月, SLAC Brurton Richter e+e-对撞Chap.7 强子结构的夸克模型55Ting 发现发现J粒子的双臂谱仪粒子的双臂谱仪 Chap.7 强子结构的夸克模型56Chap.7 强子结构的夸克模型57Richter组对正负电子束能量扫描,得到激发曲线 eeChap.7 强子结构的夸克模型
28、58由量子力学的共振态的Breit-Wigner 公式描述上述激发曲线其中: :动量中心系中 的约化德布罗意波长 E :质心系的总能量 :共振峰对应的能量(或称为共振态的质量) :通过(e+e-)形成共振态的宽度或者说是共振态衰 变为(e+e-)末态的衰变宽度 :共振态衰变为 X末态的衰变宽度 J :为共振态的自旋 S1,S2:正负电子的自旋 22221242 (1)4( )(21)(21)()4eeXe eXRJ JESSEE ee,REeeX对共振峰下面积积分求总衰变宽度和各分宽度Chap.7 强子结构的夸克模型59v注意到下述两过程的相干性:这种相干的存在,意味着共振态 (R)和光子()
29、有相同的v共振曲线的宽度的来源: 由于正负电子束能量的分散的影响; 所产生的末态有两部分的贡献:v通过共振态衰变而来 v通过类时的虚光子的连续分布产生的末态 对于末态正负电子,还有通过类空虚光子产生的散射正负电子 ( )ee( )eeRPCJChap.7 强子结构的夸克模型602()(3096.870.04)()RJEmMeV MeV c,v考虑上述各种贡献来源及束流的能量分布, 通过拟合:其衰变宽度较(u,d,s)(反)夸克组成的矢量介子小几个量级,有必要引入一个新的夸克C, 即粲夸克更高激发态226eeffeehRdEE 5.26,87,5.12,76.3eehkeVkeVkeVkeV 1
30、PCJChap.7 强子结构的夸克模型61 7.6.2粒子的发现和底夸克的引入时间: 1977年地点: Fermi Lab.实验: 400GeV质子打Be靶结果: 末态+-的不变质量谱上有窄的共振峰, 在9.510.5GeV之间一年后, 德国汉堡DORIS谱仪发现类似的结构:用cc-bar激发态无法解释, 引入b夸克。 bb-barCornell的CESR CLEO谱仪,更高的激发态 (10.35)(10.57),Chap.7 强子结构的夸克模型627.6.3 TOP夸克的发现70年代后期,三代轻子和二代半夸克: 寻找?(Top quark)成为重要的物理目标! ?eeucdsb Chap.7
31、 强子结构的夸克模型63v1978年的汉堡的PETRA v日本KEK的TRISTAN v1989年 欧洲核子中心的LEP 1994年, LEP给出Top夸克质量限制:对正负电子对撞机的要求: Ebeam170GeVGeVmt20171816169)8 .46(GeVS )64(GeVS )200(GeVS Chap.7 强子结构的夸克模型64在 对撞机上寻找 t 夸克v1994年费米实验室的正反质子对撞机运行 产生过程: pp)1800(GeVS Xt tpp(7.62.2)pb实测u(d)u(d)ttChap.7 强子结构的夸克模型65 的衰变宽度: tbW3222222225(1) (12
32、)1()33282FtWWstttG mMMmm 衰变宽度如此之大以致来不及形成TOP偶素就衰变了. tbWtbWChap.7 强子结构的夸克模型66vtt-bar衰变末态的典型特征 : b和b-bar以B和B-bar介子为领头的强子喷注。W+和W-可以通过轻子或者qq-bar, 衰变末态事例可分为三种类型: 多喷注的强子末态(6喷注) 轻子+4喷事例,丢失中微子 双轻子+2喷注事例,大的动量损失 Attw bw bqq bq q b llB ttWbWbqqb lb vlbqq b llCttW bW bv lbl b)(9 . 35 . 38 .173)(expGeVmtChap.7 强子
33、结构的夸克模型67tbW+tbW, ,eqd squ cle , q l,q,q, q l, , , , , , ,tb q qtb q qtb ltb lChap.7 强子结构的夸克模型68tt-bar衰变末态的典型特征 :多喷注的强子末态(6喷注)Attw bw bqq bq q b ,llBttW bW bqq B lB orv l Bq q B 轻子+4喷事例,丢失中微子双轻子+2喷注事例,大的动量损失llCttW bW bv l B l BChap.7 强子结构的夸克模型69)(9 . 35 . 38 .173)(expGeVmtW-W+ubub小快度区多喷注重建,找到两个W为标记,
34、由W和b-jet重建t和tbarChap.7 强子结构的夸克模型706种味道的夸克的主要量子数 Chap.7 强子结构的夸克模型717.7含有重味夸克的强子v非相对论粒子的系统 : 量子力学描述的束缚态v相对论的自由粒子 : 量子场论 强子 , 如质子 0.8fm,由不确定性原理,组成夸克的动量具有量级为 u,d,s 夸克质量300500MeV, 则和光速可以相比,由轻夸克构成的强子不能用非相对论的束缚态来描述, 但重夸克反之 250nPMeV cr2PVmcChap.7 强子结构的夸克模型727.7.1 重夸克偶素v正电子偶素 , 库仑势: v通过量子力学解束缚态 , 给出的系统能级分布 v类似地,可以解重夸克偶素的能级, 不过作用势是不同的.rcV24ecChap.7 强子结构的夸克模型73正电子偶素系统能级分布 Chap.7 强子结构的夸克模型74 构成的粲偶素的能级的计算v系统特点通过色荷相互作用,即交换带色的胶子构成一个束缚态 电荷之间的作用可以忽略不计 在近距离,色荷之间的作用势应具有类库仑势的形式,不同的是电磁作用的耦合常数应改成色荷相互作用的耦合常数s,而且引入色的因子CF(交换色胶子振幅的平
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 商场装饰施工安全合同协议
- 2025年广东省广州市海珠区第五中学中考二模英语试题及答案
- 三万亩香芋种植加工建设项目可行性研究报告
- 流感检测培训课件内容
- 2025年生态旅游可持续发展规划与管理:生态旅游与文化旅游产业融合发展路径报告
- 2025年环境监测物联网在环境监测设备智能化升级中的技术应用报告
- 2025年土壤改良剂在葡萄种植中的土壤改良效果研究报告
- 2025年教育信息化基础设施建设与教育信息化技术创新报告
- 2025年工业互联网平台光通信技术升级风险与应对策略报告
- 2025年绿色消费理念传播策略与消费行为引导案例分析报告
- 《月下过小修净绿堂试吴客所饷松萝茶》赏析
- 数据中心负荷计算方法
- 水箱拆除专项施工方案
- YY/T 1851-2022用于增材制造的医用纯钽粉末
- GB/T 20858-2007玻璃容器用重量法测定容量试验方法
- 纪委案件审理课件教材
- 生活中的会计课件
- 辽宁大学学生手册
- 湘美版美术一年级上册全册课件
- 酒水购销合同范本(3篇)
- 师说一等奖优秀课件师说优质课一等奖
评论
0/150
提交评论