一次函数知识点总结及典型试题_第1页
一次函数知识点总结及典型试题_第2页
一次函数知识点总结及典型试题_第3页
一次函数知识点总结及典型试题_第4页
一次函数知识点总结及典型试题_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、一次函数知识点总结及经典试题(一)函数1、变量:在一个变化过程中可以取不同数值的量。常量:在一个变化过程中只能取同一数值的量。2、函数:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就把x称为自变量,把y称为因变量,y是 x 的 函数 。* 判断Y 是否为 X 的函数,只要看X 取值确定的时候,Y 是否有唯一确定的值与之对应3、定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。4、确定函数定义域的方法:( 1)关系式为整式时,函数定义域为全体实数;( 2)关系式含有分式时,分式的分母不等于零;( 3)关系式

2、含有二次根式时,被开放方数大于等于零;( 4)关系式中含有指数为零的式子时,底数不等于零;( 5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。5、函数的解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做函数的解析式6、函数的图像一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象7、描点法画函数图形的一般步骤第一步:列表(表中给出一些自变量的值及其对应的函数值);第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);第三步:连线(按照横坐标由小到大的

3、顺序把所描出的各点用平滑曲线连接起来)。8、函数的表示方法列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。图象法:形象直观,但只能近似地表达两个变量之间的函数关系。(二)一次函数1、一次函数的定义一般地,形如y kx b ( k , b 是常数,且k 0 )的函数,叫做一次函数,其中x 是自变量。当b 0时,一次函数y kx,又叫做正比例函数。一次函数的解析式的形式是y kx b,要判断一个函数是否是一次函数,就是判断是否能化成以

4、上形式当b 0, k 0时,y kx仍是一次函数.当 b 0 , k 0 时,它不是一次函数正比例函数是一次函数的特例,一次函数包括正比例函数.2、正比例函数及性质一般地,形如y=kx(k是常数,kw0的函数叫做正比例函数,其中 k叫做比例系数.注:正比例函数一般形式y=kx (k不为零)k不为零 x指数为1 b取零当k>0时,直线y=kx经过三、一象限,从左向右上升,即随x的增大y也增大;当k<0时,?直线y=kx经过二、四象限,从左向右下降,即随x增大y反而减小.解析式:y=kx (k是常数,kw 0)(2)必过点:(0, 0)、(1, k)(3)走向:k>0时,图像经过

5、一、三象限;k<0时,?图像经过二、四象限(4)增减性:k>0, y随x的增大而增大;k<0, y随x增大而减小倾斜度:|k|越大,越接近y轴;|k|越小,越接近x轴3、一次函数及性质一般地,形如 y=kx + b(k,b是常数,kw0)那么y叫做x的一次函数.当b=0时,y=kx + b即y=kx ,所以说正比例函数是一种特殊的一次函数注:一次函数一般形式y=kx+b (k不为零)k不为零 x指数为1b取任意实数b一次函数y=kx+b的图象是经过(0, b)和(-一,0)两点的一条直线,我们称它为直k线y=kx+b,它可以看作由直线 y=kx平移|b|个单位长度得到.(当b

6、>0时,向上平移;当b<0 时,向下平移)(1)解析式:y=kx+b(k、b是常数,k 0)(3)走向:k>0,图象经过第一、三象限;b>0,图象经过第一、二象限;一 b(2)必过点:(0, b)和(-E , 0) kk<0,图象经过第二、四象限b<0,图象经过第三、四象限直线经过第0 直线经过第一、三、四象限0直线经过第一、二、四象限直线经过第二、三、四象限(4)增减性:k>0 , y随x的增大而增大;k<0, y随x增大而减小.(5)倾斜度:|k|越大,图象越接近于 y轴;|k|越小,图象越接近于 x轴.(6)图像的平移:当b>0时,将

7、直线y=kx的图象向上平移 b个单位;4、一次函数y=kx + b的图象的画法.根据几何知识:经过两点能画出一条直线,并且只能画出一条直线,即两点确定一条直线,所以画一次函数的图象时,只要先描出两点,再连成直线即可它与两坐标轴的交点:(0, b),.一般情况下:是先选取.即横坐标或纵坐标为0的点.b>0b<0b=0k>0经过二-、二、三象限经过二-、三、四象限经过二-、三象限图象从左到右上升,y随x的增大而增大k<0经过二-、二、四象限经过第二、三、四象限经过第二、四象限图象从左到右下降,y随x的增大而减小5、正比例函数与一次函数之间的关系一次函数y=kx + b的图象

8、是一条直线,它可以看作是由直线y=kx平移|b|个单位长度而得到(当b>0时,向上平移;当 b<0时,向下平移)6、正比例函数和一次函数及性质正比例函数一次函数概念一般地,形如y=kx(k是常数,kw。) 的函数叫做正比例函数,其中k叫做比例系数一般地,形如y=kx + b(k,b是常数,kw。)那么 y叫做x的一次函数.当b=0时,是y=kx ,所以 说正比例函数是一种特殊的一次函数 .自变量 范围X为全体实数图象一条直线必过点(0, 0)、(1, k)一b(0, b)和(-b, 0) k走向k>0时,直线经过一、三象限; k<0时,直线经过二、四象限k>0,

9、b>0,直线经过第一、二、二象限k>0, b<0直线经过A、三、四象限k<0, b>0直线经过A、二、四象限k<0, b<0直线经过第二、三、四象限增减性k>0, y随x的增大而增大;(从左向右上升)k<0, y随x的增大而减小。(从左1可右下降)倾斜度|k|越大,越接近y轴;|k|越小,越接近x轴图像的 平移b>0时,将直线y=kx的图象向上平移 4个单位;b<0时,将直线y=kx的图象向卜平移 忖个单位.6、直线 yk1 x b1 ( k10 )与y k2x b2 ( k20 )的位置关系(1)两直线平行k1卜2且4 b2(

10、2)两直线相交kik2(3)两直线重合 k1卜2且4 b2(4)两直线垂直k1k217、用待定系数法确定函数解析式的一般步骤:(1)根据已知条件写出含有待定系数的函数关系式;(2)将x、y的几对值或图象上的几个点的坐标代入上述函数关系式中得到以待定系数 为未知数的方程;(3)解方程得出未知系数的值;(4)将求出的待定系数代回所求的函数关系式中得出所求函数的解析式1下列函数中,自变量 x的取值范围是x> 2的是()A. y= V2_x B . y= 1 C . y=" x2D . y= Jx_2 xx.2.x 22正比例函数y (3m 5)x ,当m 时,y随x的增大而增大.3函

11、数y=(k-1) x, y随x增大而减小,则k的范围是()A. k 0 B. k 1 C. k 1D. k 14若m<0, n>0,则一次函数y=mx+n的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限5用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象A x y 2 0, 3x 2y 1 0b. 2x y 1 0,c .3x 2y 1 02x y 1 0,D3x 2y 5 0x y 22x y 10,06.若一次函数y kxb的图象经过第一象限,且与y轴负半轴相交,那a. k 0,B. k 0, b 0C. k0, b 0D.k 0, b

12、7 . 一次函数y=kx+b(k,b是常数,kw0)的图象如图9所示,则不等式kx+b>0的解集是A. x>-2B . x>0 C . xv-2D . x<08 .如图,一次函数图象经过点A,且与正比例函数yx的图象交于点B,则该一次函数的表达式为(a. yb. yd. y1 O/ 2A1608002 4 6第4题8y(千米)快艇x(小时)9.如图表示一艘轮船和一艘快艇沿相同路线从甲港出发到乙港行驶过程随时间变化的图象根据图象下列结论错误的是(A.轮船的速度为20千米/时B.快艇的速度为40千米/时C.轮船比快艇先出发2小时D.快艇不能赶上轮船10. 一次函数y1kx

13、b与y2x a的图象如图,则下列结论k 0;a 0;当x3时,y y2中,正确的个数是(a<011.函数y=ax+b与y= bx+a的图象在同一坐标系内的大致位置正确的是()12、一次函数y=kx + b的自变量的取值范围是 3 &相应函数值的取值范围是5WyW2,求这个一次函数的解析式。13函数y=J5X中自变量x的取值范围是 .14.函数y=kx+b ( kw 0)的图象平行于直线 y=2x+3,且交y轴于点(0, -1 ), ?则其解析式 是.1、 若直线y=x+k不经过第一象限,则k的取值范围为。22、 把直线y=2x 1向下平移3个单位得到的函数解析式为。33、 若y=

14、kx+ (2k1)的图象经过原点,则 k=;当时k=时,这个函数的图象与轴交于(0, 1)1、甲、乙两家体育用品商店出售同样的乒乓球拍和乒乓球,乒乓球拍每付定价20元,乒乓球每盒定价5元.现两家商店搞促销活动,甲店:每买一付球拍赠一盒乒乓球;乙店:按定价的9折优惠。某班级需购球拍4付,乒乓球若干盒(不少于4盒)。(1)设购买乒乓球盒数为 x(盒),在甲店购买的付款数为 y甲(元),在乙店购买的付款为 y (元),分别写出在这两家商店购买的付款数与乒乓球盒数x之间的函数关系式;(2)就乒乓球盒数讨论去哪家商店买合算。2求下列一次函数的解析式:(1)图像过点(1, 1)且与直线2,+7一5平行;(

15、2)图像和直线 卫二-弓亮+ 2在y轴上相交于同一点,且过(2, 3)点.3:已知一次函数:3附+ (熊-4).求:(1)m为何值时,y随*的增大而减小;(2)m n满足什么条件时,函数图像与 y轴的交点在x轴下方;(3) m, n分别取何值时,函数 图像经过原点;(4) m, n满足什么条件时,函数图像不经过第二象限.4已知一次函数的图象经过点 上(一三一2)及点B (1, 6),求此函数图象与坐标轴围成的三角形的面积.15、如图,直线L: y ,x 2与x轴、y轴分别父于A、B两点,在y轴上有一点C (0, 4),动点M从A点以每秒1个单位的速度沿x轴向左 移动。(1)求A、B两点的坐标;(2)求COM勺面积S与M的移动时间t之间的函数关系式;(3)当t何值日CO阵AAOEB并求此时 M点的坐标。P(2,p)在第一象限,直线 PA例5如图,A、B分别是X轴上位于原点左、右两侧的点,点 交轴于点C(0,2),直线PB交)轴于点D,8小也(i)aoof1的面积是多少?(2)求点A的坐标及p的值.(3)若'血加1户工城,求直线BD的函数解析式.8已知直线li : y kix &经过点(一1, 6)和(1, 2),它和x轴、y轴分别交于B和A;直线l2 : y k1x b2经过点(2, 4)和(0, 3),它和x轴、y轴的交点分别是 D 和C=(1)求直线

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论