




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、Incorporating spatial autocorrelation into the general linear model with an application to the yellowfin tuna (Thunnus albacares) longline CPUE data 將空間自我相關與泛線性模式結合,並應 用在黃鰭鮪魚延繩釣的CPUE數據資料中。指導老師 王勝平 學生 賴冠宇FrameResultsMethodsIntroduction DiscussionCPUEStandardCase studyStandard-GLMStandard-GLM/HBMSpati
2、al-GLMSpatial-GLM/HBM Evaluation of the spatial-GLMIntroductionCPUEn Often been utilized to obtain a relative index of the abundance of a fish stock.n Affected by changes of year, season, area of fishing and various environmental factors.StandardMany statistical methods have been used to standardize
3、 them to account for such variations.n generalized linear models (standard- GLM) the most commonly usedn general additive models (GAM)n neural networks (NN)n regression trees (RT)The spatial autocorrelation brings a potentially major problem in standardizing the CPUEs by use of the standard-GLM, GAM
4、, NN or RT.ProblemStandardSolutionHBM Standard-GLM = Standard-GLM/HBM Habitat-based models Spatial autocorrelationStandard-GLM/HBM = Spatial-GLM/HBMMore accurate Standardized CPUEs Relative indices of the abundance of the fish Case studyWe use these models to analyze data on the CPUE of yellowfin tu
5、na (Thunnus albacares) of the Japanese longline fisheries in the Indian Ocean.Finallyn Evaluate the results of the spatial-GLMsMethodsIntroductionn standard-GLM and spatial-GLM were used to analyze the Japanese yellowfin tuna longline CPUE data in the Indian Ocean.n Each method was employed with and
6、 without HBM. The data were detailed in Nishida et al. (2003) and summarized in Table 1.MethodsMethodsStandard-GLMThe standard-GLM without HBM is of the form:Standard-GLMStandard-GLMnFollowing Bigelow and Nishida:HBF(the number of hooks between two floats) was divided into six classes: 56、79、1011、12
7、15、1620、2125. n The Japanese tuna longline fisheries with 34 HBF Swordfish. Excluded the data from this type of gear.n Also added the effects : SST (sea surface temperature ) TD (thermocline depth ) to the model. May have affected the distribution and abundance of yellowfin tuna.Standard-GLM/HBMStan
8、dard- GLM/HBM :Spatial-GLMEq. (1) can be written as:The assumption of independent CPUE or in the standard-GLM, Eq. (3), is obviously violated for a fish population, for it ignores the spatial autocorrelation in the many features of the population.After all, fish move together with a positive spatial
9、 dependency. The more closely in space the observations are made, the more similar they are.Spatial-GLMWith cov(i, j) = ij 0, i is not equal to j:Spatial-GLMSpatial-GLMSpatial-GLM/HBMLRT(likelihood ratio test) used for the spatial-GLM can be applied to the effective CPUE, as defined in Eq. (2), to y
10、ield the spatial-GLM/HBM. For both spatial-GLM and spatial-GLM/HBM, the spatial autocorrelation structure was modeled as covariograms, as defined in Eq.(5)In the spatial-GLM, three distancerelated parameters (sill, range and nuggets) were estimated, along with those in the standard-GLM. A case study
11、Four GLMs (standard-GLM, standard-GLM/HBM, spatial-GLM and spatial-GLM/HBM) were used to analyze yellowfin tuna CPUE data (19582001) of the Japanese longline fisheries in the Indian Ocean, together with some environmental factors.In the spatial-GLM and spatial-GLM/HBM, four distance models (Gaussian
12、, exponential, linear, and spherical) were also examined.ResultsMethodsIntroductionResultsOf the four distance models, the Gaussian model had the best goodness-of-fit. The ResultsResultsResultsResultsResultsResultsResultsMethodsIntroduction Discussion Evaluation of the spatial-GLMAlthough the tempor
13、al trends in the CPUEs from the spatial-GLMs did not differ greatly from those from the standard-GLMs, the spatial-GLMs are preferred for analyzing the CPUE data on yellowfin tuna, especially if there is strong spatial autocorrelation among the data.This is because the spatial-GLMs took account of t
14、he spatial autocorrelation effectively and yielded more realistic estimates of the variances. This is not surprising, especially considering the semivariograms and covariograms from the standard-GLMs (Fig. 3).A covariogram is a function of the distance between data points that measures how strong th
15、eir spatial autocorrelation is. A positive spatial autocorrelation manifests itself in a decrease with distance to zero at some distance, where observations are no longer autocorrelated.The likelihood ratio tests (LRT) for spatial independence of H0: r = 0 showed that the test statistics were highly significant in all cases (Table 3).The
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年事业单位工勤技能-河北-河北医技工一级(高级技师)历年参考题库含答案解析
- 2025年事业单位工勤技能-江苏-江苏不动产测绘员四级(中级工)历年参考题库含答案解析(5套)
- 2025年事业单位工勤技能-广西-广西收银员四级(中级工)历年参考题库典型考点含答案解析
- 2025年事业单位工勤技能-广西-广西图书资料员五级(初级工)历年参考题库典型考点含答案解析
- 2025年事业单位工勤技能-广东-广东铸造工二级(技师)历年参考题库含答案解析
- 2025年事业单位工勤技能-广东-广东汽车修理工(技师/高级技师)历年参考题库典型考点含答案解析
- 2025年事业单位工勤技能-广东-广东土建施工人员一级(高级技师)历年参考题库含答案解析
- 2020-2025年证券从业之金融市场基础知识自测模拟预测题库(名校卷)
- 2025年职业技能鉴定-铁路职业技能鉴定-铁路职业技能鉴定(铁路车站值班员)高级历年参考题库含答案解析(5套)
- 2025年职业技能鉴定-邮政储汇业务员-邮政储汇业务员高级历年参考题库含答案解析(5套)
- 自行缴纳社保协议书模板
- 2024年新冀教版七年级上册数学教学课件 1.1 正数和负数 第1课时
- 《橡胶的硫化工艺》课件
- 阿尔茨海默病药物治疗指南(2025)解读
- 《秋季腹泻》课件
- 湖南省房屋建筑和市政基础设施工程-“机器管招投标”模块化招标文件(施工)-(2025年第1版)
- 2025-2030中国近红外光谱分析仪行业市场发展趋势与前景展望战略研究报告
- 《贵阳市公共交通场站设计导则》
- 职业指导师考试题库及答案(含各题型)
- 企业融资过程中的税务问题解析
- 2025年广西职业院校技能大赛中职组(婴幼儿保育赛项)参考试题库及答案
评论
0/150
提交评论