




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、简单的线性规划应用题简单的线性规划应用题(1)1叙述线性规划的图解法步骤: 画画出线性约束条件所表示的可行域;移在目标函数所表示的一组平行线中,利用平移的方法找出与可行域有公共点且纵(横)截距最大、最小的直线;求通过解方程组求出最优解;答作出答案还原说明导入新课应用数学模型法解决实际问题的基本步骤:实际问题抽象概括数学模型实际问题的解数学模型的解推理演算 在科学研究、工程设计、经济管理等方面,我们经常会碰到最优化决策的实际问题,而解决这类问题的理论基础是线性规划利用线性规划研究的问题,大致可归纳为两种类型:第一种类型是给定一定数量的人力、物力资源,问怎样安排动用这些资源,能使完成的任务量最大,
2、收到的效益最大;第二种类型是给定一项任务,问怎样统筹安排,能使完成这项任务的人力、物力资源量最小本节课主要研究这两类问题例1:投资生产A产品时,每生产100t需要资金200万元,需场地200m2,可获利300万元;投资生产B产品时,每生产100m需要资金300万元,需场地100m2,可获利200万元.现某单位可使用资金1400万元,场地900m2,问:应作怎样的组合投资,可使获利最大?分析:这是一个二元线性规划问题,可先将题中数据整理成表格,以方便理解题意:然后根据此表数据,设出未知数,列出约束条件和目标函数,最后用图解法求解解:设生产A产品x百吨,生产B产品y百米,利润为s百万元231429
3、00 xyxyxy则约束条件为32Sxy目标函数为作出可行域(如图),322Syx 将目标函数变形为32y2S,它表示斜率为,在轴上截距为的直线,平移直 线322Syx 13 5(, )422S29xy2314xy当它经过直线和的交点 时,最大, 即s最大1353214.7542S 此时因此,生产A产品325吨,生产B产品250米时,利润最大为1475万元例例2某工厂生产甲、乙两种产品,生产甲种产品1t需耗A种矿石10t、B种矿石5t、煤4t;生产乙种产品1t需耗A种矿石4t、B种矿石4t、煤9t每1t甲种产品的利润是600元,每1t乙种产品的利润是1000元工厂在生产这两种产品的计划中要求消
4、耗A种矿石不超过300 t、B种矿石不超过200 t、煤不超过360 t甲、乙两种产品各生产多少(精确到1 t),能使利润总额达到最大?依据题中已知条件,列表如下: 甲产品(1t)乙产品(1t)资源限额(t)A种矿石(t)104300B种矿石(t)54200煤(t)49360利润(元)6001000 资源消耗品产品求,取何值时,目标函数已知变量,满足约束条件xy非负约束变量非负约束变量煤资源约束种矿石资源约束种矿石资源约束yyxxyxByxAyx. 0, 0,36094,20045,300410 xyytZ1000600 取得最大值建立数学模型: 求解: 采用上节课所讲的图解法求出最大值4 .
5、1229360 x4 .34291000y,第二类问题第二类问题 即给定一项任务,如何合理安排和规划,能即给定一项任务,如何合理安排和规划,能以最少的人力、物力、资金等资源来完成该项任以最少的人力、物力、资金等资源来完成该项任务务例例3、营养学家指出,成人良好的日常饮食应该至少提、营养学家指出,成人良好的日常饮食应该至少提供供0.075kg的碳水化合物,的碳水化合物,0.06kg的蛋白质,的蛋白质,0.06kg的的脂肪,脂肪,1kg食物食物A含有含有0.105kg碳水化合物,碳水化合物,0.07kg蛋白质,蛋白质,0.14kg脂肪,花费脂肪,花费28元;而元;而1 kg食物食物B含有含有0.1
6、05kg碳水化碳水化合物,合物,0.14kg蛋白质,蛋白质,0.07kg脂肪,花费脂肪,花费21元。为了满足元。为了满足营养专家指出的日常饮食要求,同时使花费最低,需要营养专家指出的日常饮食要求,同时使花费最低,需要同时食用食物同时食用食物A和食物和食物B多少多少kg?食物kg碳水化合物kg蛋白质/kg脂肪kgA0.1050.070.14B0.1050.140.07分析:将已知数据列成表格分析:将已知数据列成表格解:设每天食用解:设每天食用xkg食物食物A,ykg食物食物B,总成,总成本为本为z,那么,那么0.1050.1050.0750.070.140.060.140.070.0600 xy
7、xyxyxy目标函数为:目标函数为:z28x21y作出二元一次不等式组所表示的平面区域,即可行域作出二元一次不等式组所表示的平面区域,即可行域7757146147600 xyxyxyxy把目标函数把目标函数z28x21y 变形为变形为xyo5/75/76/73/73/76/74321zyx 它表示斜率为它表示斜率为随随z变化的一组平行直变化的一组平行直线系线系34 是直线在是直线在y轴上轴上的截距,当截距最的截距,当截距最小时,小时,z的值最小。的值最小。21zM 如图可见,当直线如图可见,当直线z28x21y 经过可经过可行域上的点行域上的点M时,截距时,截距最小,即最小,即z最小。最小。M
8、点是两条直线的交点,解方程组点是两条直线的交点,解方程组6714577yxyx得得M点的坐标为:点的坐标为:7471yx所以所以zmin28x21y16 由此可知,每天食用食物由此可知,每天食用食物A143g,食物,食物B约约571g,能够满足日常饮食要求,又使花费最低,能够满足日常饮食要求,又使花费最低,最低成本为最低成本为16元。元。解线性规划问题的步骤:解线性规划问题的步骤: (2 2)移移:在线性目标函数所表示的一组平行:在线性目标函数所表示的一组平行线中,利用平移的方法找出与可行域有公共线中,利用平移的方法找出与可行域有公共点且纵截距最大或最小的直线;点且纵截距最大或最小的直线; (
9、3 3)求求:通过解方程组求出最优解;:通过解方程组求出最优解; (4 4)答答:作出答案。:作出答案。 (1 1)画画:画出线性约束条件所表示的:画出线性约束条件所表示的可行域可行域; 某工厂用某工厂用A、B两种配件生产甲、乙两种产品,每两种配件生产甲、乙两种产品,每生产一件生产一件甲产品甲产品使用使用4个个A配件耗时配件耗时1h,每生产一件,每生产一件乙乙产品产品使用使用4个个B配件耗时配件耗时2h,该厂每天最多可从配件厂,该厂每天最多可从配件厂获得获得16个个A配件和配件和12个个B配件,按每天工作配件,按每天工作8h计算,计算,该厂所有可能的该厂所有可能的日生产安排日生产安排是什么?是
10、什么?A配件配件(个)(个)B配件配件(个)(个)耗时(耗时(h)甲产品甲产品乙产品乙产品限限 制制414216812一、实际问题一、实际问题设设甲、乙甲、乙两种产品分别生产两种产品分别生产x、y件件,由已知条件可,由已知条件可得二元一次不等式组得二元一次不等式组2y84x164y12x0y0 x284300 xyxyxy将不等式组表示成平面上的区域,图中的阴影部分中的将不等式组表示成平面上的区域,图中的阴影部分中的整点整点(坐标为整数坐标为整数)就代表所有可能的日生产安排。)就代表所有可能的日生产安排。yx4843ox+2y=8x=4y=3284300 xyxyxy提出新问题:提出新问题:
11、若生产一件若生产一件甲甲产品获利产品获利2万元万元,生产,生产一件一件乙乙产品获利产品获利3万元万元,采用那种生产安排,采用那种生产安排利润最大利润最大?A配件配件(个)(个)B配件配件(个)(个)耗时(耗时(h) 利润(万元)利润(万元)甲产品甲产品41乙产品乙产品42限限 制制161282万元万元3万元万元yx4843oM设工厂获得的利润为设工厂获得的利润为z,则,则z2x3y 把把z2x3y变形为变形为 233zyx 23它表示斜率为它表示斜率为 在在y轴上的截距为轴上的截距为 的直的直线。线。3z当当z变化时,可以得变化时,可以得到到一族互相平行一族互相平行的的直线。直线。2x+3y=
12、0令令z=0,作直线作直线2x+3y=0由上图可以看出,当经过直线由上图可以看出,当经过直线x=4x=4与直线与直线x+2y-8=0 x+2y-8=0的的交点交点M M(4 4,2 2)时,截距时,截距 的值最大,最大值为的值最大,最大值为 ,3z143这时这时2x+3y=14.所以,每天生产甲产品所以,每天生产甲产品4件,乙产品件,乙产品2件时,工厂可获得最大利润件时,工厂可获得最大利润14万元万元。yx4843oM(4, 2)( Zmax=2x+3y=24+32=14 )试求满足上述约束条件的,且使目标函数取得最小值(其中、均为正整数)设需截第一种钢板张,第二种钢板张,由题xy. 0, 0
13、,273,182,152yxyxyxyxyx,yxZxy中表格得2第二类问题实例 例3 要将两种大小不同的钢板截成A,B,C 三种规格,每张钢板可同时截得三种规格的小钢板的决数如下表所示: A 规格B 规格C 规格第一种钢板211第二种钢板123规格类型钢板类型今需要A,B,C 三种规格的成品分别为15,18,27块,问各截这两种钢板多少张可得所需三种规格成品,且使所用钢板张数最少 解:演示课件演示课件 直线,此直线经过直线和直线(为参数)经过可行域内的点且和原点距离最近的作出一组与直线平行的直线中ltyxt152 yx273 yx)539,518(A557 yx的交点,直线方程为点)且与原点
14、距离最近的直线是,由于和都不是整数,而最优解中,518539),(yxyx、12 yx)9 , 3(B)8 , 4(C)539,518(必须都是整数,所以,可行域内的点不是最优解经过可行域内的整点(横坐标和纵坐标都是整数的经过的整点是和,它们是最优解课堂练习 某工厂家具车间造型两类桌子,每张桌子需木工和漆工两道工序完成已知木工做一张型桌子分别需要1小时和2小时,漆工油漆一张型桌子分别需要3小时和1小时;又知木工、漆工每天工作分别不得超过8小时和9小时,而工厂一张型桌子分别获利润2千元和3千元,试问工厂每天应生产型桌子各多少张,才能获利润最大?目标函数为. 获利润为 千元,则设每天生产型桌子张, 型桌子张,每天所AxByZ. 0, 0, 93, 82yxyxyxyxZ32 解:解:且与原点距离最大,此时取得最大值上方平移至的位置时,直线经过可行域上的点,l032 yxlMyxZ32 如图,作出可行域,把直线:向右答:每天应生产型桌子2张, 型桌子3张才能解方程组 得., 93, 82yxyx3 , 2MAB获最大利润小结小结 1解线性规划实际问题的一般步骤; 2线性规划问题的二类题型 1课本作业 ,习题7.4,第3、4题 布置作业 65P 某工厂生产和两种产品,按计划每天生产 产品各不得小于,已知生产产品需用煤,电4度,劳动
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 新生儿火灾转移应急预案(3篇)
- 行政法学考试时的思维方法与应变策略:试题及答案
- 敏捷开发工具选型试题及答案
- 信息技术市场竞争分析试题及答案
- 软考IP地址规划技巧试题及答案
- DevOps实践及其重要性试题及答案
- 2025关于协商工资调整合同劳动范本
- 公司效率提升与战略风险管理的协同思考试题及答案
- AI与机器学习入门试题及答案
- 2025湖南工商大学横向科研课题合同签订仪式
- 江苏省无锡市2024年中考模拟数学试题附答案
- 2024年山东出版集团有限公司招聘笔试参考题库含答案解析
- 氮化镓射频器件
- 习题课 理想气体的状态方程及状态变化图像
- 手术室甲状腺切除术手术配合护理查房
- 建筑工程各类材料送检取样规范(资料员)
- 六年级下册综合实践活动教案-我爱阅读 全国通用
- Rexroth (博世力士乐)VFC 3610系列变频器使用说明书
- 余华《活着》赏析ppt
- 第8章-GNSS测量与定位-课件
- 卫生院外伤处置方案
评论
0/150
提交评论