版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、微分方程 第十二章yxfy求已知, )( 积分问题积分问题 yy求及其若干阶导数的方程已知含, 微分方程问题微分方程问题 推广 微分方程的基本概念 机动 目录 上页 下页 返回 结束 第一节微分方程的基本概念微分方程的基本概念引例引例 几何问题几何问题物理问题物理问题 第十二章 引例引例1. 一曲线通过点(1,2) ,在该曲线上任意点处的解解: 设所求曲线方程为 y = y(x) , 则有如下关系式:xxy2ddxxyd2Cx 2(C为任意常数)由 得 C = 1,.12 xy因此所求曲线方程为21xy由 得切线斜率为 2x , 求该曲线的方程 . 机动 目录 上页 下页 返回 结束 引例引例
2、2. 列车在平直路上以sm20的速度行驶, 制动时获得加速度,sm4 . 02a求制动后列车的运动规律.解解: 设列车在制动后 t 秒行驶了s 米 ,已知4 . 0dd22ts,00ts200ddtts由前一式两次积分, 可得2122 . 0CtCts利用后两式可得0,2021CC因此所求运动规律为tts202 . 02说明说明: 利用这一规律可求出制动后多少时间列车才能停住 , 以及制动后行驶了多少路程 . 即求 s = s (t) .机动 目录 上页 下页 返回 结束 常微分方程偏微分方程含未知函数及其导数的方程叫做微分方程微分方程 .方程中所含未知函数导数的最高阶数叫做微分方程(本章内容
3、)0),()(nyyyxF),() 1()(nnyyyxfy( n 阶显式微分方程)微分方程的基本概念微分方程的基本概念一般地 , n 阶常微分方程的形式是的阶阶.分类或机动 目录 上页 下页 返回 结束 ,00ts200ddtts引例24 . 022ddxy 使方程成为恒等式的函数.通解通解 解中所含独立的任意常数的个数与方程) 1(00) 1(0000)(,)(,)(nnyxyyxyyxy 确定通解中任意常数的条件.n 阶方程的初始条件初始条件( (或初值条件或初值条件) ):的阶数相同.特解特解xxy2dd21xy引例1 Cxy22122 . 0CtCts通解:tts202 . 0212
4、 xy特解:微分方程的解解 不含任意常数的解, 定解条件定解条件 其图形称为积分曲线积分曲线. .机动 目录 上页 下页 返回 结束 例例1. 验证函数是微分方程tkCtkCxsincos2122ddtx的解,0Axt00ddttx的特解 . 解解: 22ddtxt kkCsin22)cossin(212t kCt kCkxk2这说明tkCtkCxsincos21是方程的解 . 是两个独立的任意常数,21,CC),(21为常数CCt kkCcos2102xk利用初始条件易得: ,1AC 故所求特解为tkAxcos,02C故它是方程的通解.并求满足初始条件 机动 目录 上页 下页 返回 结束 求
5、所满足的微分方程 .例例2. 已知曲线上点 P(x, y) 处的法线与 x 轴交点为 QPQxyox解解: 如图所示, yYy1)(xX 令 Y = 0 , 得 Q 点的横坐标yyxX,xyyx即02 xyy点 P(x, y) 处的法线方程为且线段 PQ 被 y 轴平分, 第二节 目录 上页 下页 返回 结束 P263 (习题12-1) 1 ; 2 (3),(4); 3 (2); 4 (2),(3) ; 6 思考与练习思考与练习转化 可分离变量微分方程 机动 目录 上页 下页 返回 结束 第二节解分离变量方程解分离变量方程 xxfyygd)(d)(可分离变量方程可分离变量方程 )()(dd21
6、yfxfxy0 )(d )(11xNxxMyyNyMd)( )(22 第十二章 分离变量方程的解法分离变量方程的解法:xxfyygd)(d)(设 y (x) 是方程的解, xxfxxxgd)(d)()(两边积分, 得 yygd)(xxfd)(CxFyG)()(则有恒等式 )(yG)(xF当G(y) 与F(x) 可微且 G(y) g(y)0 时, 说明由确定的隐函数 y(x) 是的解. 则有称为方程的隐式通解, 或通积分.同样,当F(x)= f (x)0 时,上述过程可逆,由确定的隐函数 x(y) 也是的解. 机动 目录 上页 下页 返回 结束 例例1. 求微分方程yxxy23dd的通解.解解:
7、 分离变量得xxyyd3d2两边积分xxyyd3d2得13lnCxyCxylnln3即13Cxey31xCee3xeCy 1CeC令( C 为任意常数 )或说明说明: 在求解过程中每一步不一定是同解变形, 因此可能增、减解.( 此式含分离变量时丢失的解 y = 0 )机动 目录 上页 下页 返回 结束 例例2. 解初值问题0d)1(d2yxxyx解解: 分离变量得xxxyyd1d2两边积分得Cxyln11lnln2即Cxy12由初始条件得 C = 1,112xy( C 为任意常数 )故所求特解为 1)0(y机动 目录 上页 下页 返回 结束 例例3. 求下述微分方程的通解:) 1(sin2yx
8、y解解: 令 , 1yxu则yu1故有uu2sin1即xuuddsec2Cxutan解得Cxyx) 1tan( C 为任意常数 )所求通解:机动 目录 上页 下页 返回 结束 练习练习:.dd的通解求方程yxexy解法解法 1 分离变量xeyexyddCeexy即01)(yxeCe( C 0,21ddyxyxyx, vyx 则,yxv 令21ddvyvyyvyvyxddddCyvvlnln)1(ln2积分得故有1222CvyCy, xvy代入得)2(22CxCy (抛物线)221)(vvCyCyvv21故反射镜面为旋转抛物面.于是方程化为(齐次方程) 机动 目录 上页 下页 返回 结束 顶到底
9、的距离为 h ,hdC82说明说明:)(222CxCy2,2dyhCx则将这时旋转曲面方程为hdxhdzy1642222hd若已知反射镜面的底面直径为 d ,代入通解表达式得)0,(2CoyxA机动 目录 上页 下页 返回 结束 ( h, k 为待 *二、可化为齐次方程的方程二、可化为齐次方程的方程111ddcybxacybxaxy)0(212cc,. 111时当bbaa作变换kYyhXx,dd,ddYyXx则原方程化为 YbXaYbXaXY11ddckbha111ckbha令 0ckbha0111ckbha, 解出 h , k YbXaYbXaXY11dd(齐次方程)定常数), 机动 目录
10、上页 下页 返回 结束 ,代入将kyYhxX求出其解后, 即得原方 程的解.,. 211时当bbaa原方程可化为 1)(ddcybxacybxaxy令, ybxavxybaxvdddd则1ddcvcvbaxv(可分离变量方程)注注: 上述方法可适用于下述更一般的方程 111ddcybxacybxafxy)0(212cc)0( b机动 目录 上页 下页 返回 结束 例例4. 求解64ddyxyxxy52xy解解:04 kh令,5, 1YyXxYXYXXYdd得再令 YX u , 得令06 kh5, 1kh得XXuuudd112积分得uarctan)1(ln221uXCln代回原变量, 得原方程的
11、通解:机动 目录 上页 下页 返回 结束 15arctanxy2151ln21xy) 1(lnxC52xy利用得 C = 1 , 故所求特解为15arctanxy22)5() 1(ln21yx思考思考: 若方程改为 ,64ddyxyxxy如何求解? 提示提示:. yxv令作业作业 P276 1(1), (4), (6); 2 (2), (3); 3; 4(4)第四节 目录 上页 下页 返回 结束 一阶线性微分方程 机动 目录 上页 下页 返回 结束 第四节一、一阶线性微分方程一、一阶线性微分方程二、伯努利方程二、伯努利方程 第十二章 一、一阶线性微分方程一、一阶线性微分方程一阶线性微分方程标准
12、形式:)()(ddxQyxPxy若 Q(x) 0, 0)(ddyxPxy若 Q(x) 0, 称为非齐次方程非齐次方程 .1. 解齐次方程分离变量xxPyyd)(d两边积分得CxxPylnd)(ln故通解为xxPeCyd)(称为齐次方程齐次方程 ;机动 目录 上页 下页 返回 结束 对应齐次方程通解xxPeCyd)(齐次方程通解非齐次方程特解xxPCed)(2. 解非齐次方程)()(ddxQyxPxy用常数变易法常数变易法:,)()(d)(xxPexuxy则xxPeud)()(xPxxPeud)()(xQ故原方程的通解xexQexxPxxPd)(d)(d)(CxexQeyxxPxxPd)(d)(
13、d)(y即即作变换xxPeuxPd)()(xxPexQxud)()(ddCxexQuxxPd)(d)(两端积分得机动 目录 上页 下页 返回 结束 例例1. 解方程 .) 1(12dd25xxyxy解解: 先解,012ddxyxy即1d2dxxyy积分得,ln1ln2lnCxy即2) 1( xCy用常数变易法常数变易法求特解. 令,) 1()(2xxuy则) 1(2) 1(2 xuxuy代入非齐次方程得21) 1( xu解得Cxu23) 1(32故原方程通解为Cxxy232) 1(32) 1(机动 目录 上页 下页 返回 结束 例例2. 求方程的通解 .解解: 注意 x, y 同号,d2d,0
14、 xxxx时当yyxyx2dd2yyP21)(yyQ1)(由一阶线性方程通解公式通解公式 , 得ex yy2dey1yy2dCxlnd故方程可变形为0d2d3yyxyyxxyy1y1 lndCy 所求通解为 )0(CCeyyxyCyln这是以x为因变量, y为 自变量的一阶线性方程机动 目录 上页 下页 返回 结束 在闭合回路中, 所有支路上的电压降为 0例例3. 有一电路如图所示, ,sintEEm电动势为电阻 R 和电. )(tiLERK解解: 列方程 .已知经过电阻 R 的电压降为R i 经过 L的电压降为tiLdd因此有,0ddiRtiLE即LtEiLRtimsindd初始条件: 00
15、ti由回路电压定律:其中电源求电流感 L 都是常量,机动 目录 上页 下页 返回 结束 LERK解方程:LtEiLRtimsindd00tiCxexQeyxxPxxPd)(d)(d)(由初始条件: 00ti得222LRLECm)(ti dtLRetLEmsintLRmeCtLtRLRE)cossin(222tetLRddC利用一阶线性方程解的公式可得机动 目录 上页 下页 返回 结束 tLRmeLRLEti222)()cossin(222tLtRLREmtLRmeLRLEti222)()sin(222tLREm暂态电流稳态电流则令,arctanRLLERK因此所求电流函数为解的意义: 机动 目
16、录 上页 下页 返回 结束 二、伯努利二、伯努利 ( Bernoulli )方程方程 伯努利方程的标准形式:)1,0()()(ddnyxQyxPxynny以)()(dd1xQyxPxyynn令,1 nyzxyynxzndd)1 (dd则)()1 ()()1 (ddxQnzxPnxz求出此方程通解后,除方程两边 , 得换回原变量即得伯努利方程的通解.解法解法:(线性方程)伯努利 目录 上页 下页 返回 结束 例例4. 求方程2)ln(ddyxaxyxy的通解.解解: 令,1 yz则方程变形为xaxzxzlndd其通解为ez 将1 yz1)ln(22xaCxyxxd1exa)ln(xxd1Cx d
17、2)ln(2xaCx代入, 得原方程通解: 机动 目录 上页 下页 返回 结束 内容小结内容小结1. 一阶线性方程)()(ddxQyxPxy方法1 先解齐次方程 , 再用常数变易法.方法2 用通解公式CxexQeyxxPxxPd)(d)(d)(,1 nyu令化为线性方程求解.2. 伯努利方程nyxQyxPxy)()(dd)1,0(n机动 目录 上页 下页 返回 结束 思考与练习思考与练习判别下列方程类型:xyyxyxyxdddd) 1()ln(lndd)2(xyyxyx0d2d)()3(3yxxxy0d)(d2)4(3yxyxyyxxyxydd)2ln()5(提示提示:xxyyydd1 可分离
18、 变量方程xyxyxylndd齐次方程221dd2xyxxy线性方程221dd2yxyyx线性方程2sin2ddyxxyxxy伯努利方程机动 目录 上页 下页 返回 结束 P281 1 (3) , (6) , (9) ; 2 (5) ; 6 ; 7 (3) , (5) 作业第五节 目录 上页 下页 返回 结束 备用题备用题1. 求一连续可导函数)(xf使其满足下列方程:ttxfxxfxd)(sin)(0提示提示:令txuuufxxfxd)(sin)(0则有xxfxfcos)()(0)0(f利用公式可求出)sin(cos21)(xexxxf机动 目录 上页 下页 返回 结束 2. 设有微分方程,
19、 )(xfyy其中)(xf10,2 x1,0 x试求此方程满足初始条件00 xy的连续解.解解: 1) 先解定解问题10, 2xyy00 xy利用通解公式, 得xeyd1dd2Cxex)2(1CeexxxeC12利用00 xy得21C故有) 10(22xeyx机动 目录 上页 下页 返回 结束 2) 再解定解问题1,0 xyy1122) 1 (eyyx此齐次线性方程的通解为) 1(2xeCyx利用衔接条件得) 1(22eC因此有) 1() 1(2xeeyx3) 原问题的解为y10),1 (2xex1,) 1(2xeex机动 目录 上页 下页 返回 结束 ( 雅各布第一 伯努利 ) 书中给出的伯
20、努利数在很多地方有用, 伯努利伯努利(1654 1705)瑞士数学家, 位数学家. 标和极坐标下的曲率半径公式, 1695年 版了他的巨著猜度术,上的一件大事, 而伯努利定理则是大数定律的最早形式. 年提出了著名的伯努利方程, 他家祖孙三代出过十多 1694年他首次给出了直角坐 1713年出 这是组合数学与概率论史此外, 他对双纽线, 悬链线和对数螺线都有深入的研究 .全微分方程 机动 目录 上页 下页 返回 结束 第五节一、全微分方程一、全微分方程二、积分因子法二、积分因子法 第十二章 判别: P, Q 在某单连通域D内有连续一阶偏导数,xQyPDyx),( 为全微分方程 则求解步骤:方法1
21、 凑微分法;方法2 利用积分与路径无关的条件.1. 求原函数 u (x, y)2. 由 d u = 0 知通解为 u (x, y) = C .一、全微分方程一、全微分方程使若存在),(yxuyyxQxyxPyxud),(d),(),(d则称0d),(d),(yyxQxyxP为全微分方程 ( 又叫做恰当方程 ) .机动 目录 上页 下页 返回 结束 ),(yxyxo例例1. 求解0d)33(d)35(222324yyyxyxxyyxx解解: 因为yP236yyx ,xQ故这是全微分方程. , 0, 000yx取则有xxyxuxd5),(04yyyxyxyd)33(02225x2223yx3yx3
22、31y因此方程的通解为Cyyxyxx332253123)0 ,(x机动 目录 上页 下页 返回 结束 例例2. 求解0d1d)(2yxxxyx解解:21xyP 这是一个全微分方程 .用凑微分法求通解. 将方程改写为0ddd2xxyyxxx即, 0d21d2xyx故原方程的通解为021d2xyx或Cxyx221,xQ机动 目录 上页 下页 返回 结束 二、积分因子法二、积分因子法思考思考: 如何解方程?0dd)(3yxxyx这不是一个全微分方程 ,12x就化成例2 的方程 .,0),(yx使0d),(),(d),(),(yyxQyxxyxPyx为全微分方程,),(yx则称在简单情况下, 可凭观察
23、和经验根据微分倒推式得到为原方程的积分因子.但若在方程两边同乘0d),(d),(yyxQxyxP若存在连续可微函数 积分因子.例2 目录 上页 下页 返回 结束 常用微分倒推公式常用微分倒推公式:)(ddd) 1 yxyx )(ddd)2xyyxyx)(ddd)3yyxx)(2221yx )(ddd)42yyxxyyx)(ddd)52xyxxyxy)(ddd)6yxyxxyyxln)(ddd)722yxyxxyyxarctan)(ddd)822yxyyxx22yx 积分因子不一定唯一 .0ddyxxy例如, 对可取,1yx221yx ,21y,21x机动 目录 上页 下页 返回 结束 例例3.
24、 求解0d)1(d)1(yxyxxyyx解解: 分项组合得)dd(yxxy即0)dd()(d22yyxxyxyx选择积分因子,),(221yxyx同乘方程两边 , 得0dd)()d(2yyxxyxyx即0)lnd()lnd(1dyxyx因此通解为,lnln1Cyxyx即yxeCyx1因 x = 0 也是方程的解 , 故 C 为任意常数 . 0)dd(yxxyyx机动 目录 上页 下页 返回 结束 作业作业P285 1(2), (4), (7); 2(2), (5); 4 习题课1 目录 上页 下页 返回 结束 备用题备用题 解方程.0d)(dyxyxy解法解法1 积分因子法. 原方程变形为0d
25、)dd(yyyxxy取积分因子21y0ddd2yyyyxxy故通解为Cyyxln此外, y = 0 也是方程的解.机动 目录 上页 下页 返回 结束 解法解法2 化为齐次方程. 原方程变形为xyyxyddxyxy1,xuy 令,则uxuyuuuxu1xxuuudd)1 (2积分得Cxuulnln1将xyu 代入 ,Cyyxln得通解此外, y = 0 也是方程的解.机动 目录 上页 下页 返回 结束 解法解法3 化为线性方程. 原方程变形为11ddxyyx1,1QyPyyexd1 ) 1(yyed1Cy dyyyCd1yCyln其通解为yxxPed)(CxexQxxPd)(d)(即此外, y
26、= 0 也是方程的解.Cyyxln机动 目录 上页 下页 返回 结束 ),(yxfy 可降阶高阶微分方程 机动 目录 上页 下页 返回 结束 第六节一、一、 型的微分方程型的微分方程 二、二、 型的微分方程型的微分方程 )()(xfyn),(yyfy 三、三、 型的微分方程型的微分方程 第十二章 一、一、)()(xfyn令,) 1( nyz)(ddnyxz则因此1d)(Cxxfz即1) 1(d)(Cxxfyn同理可得2)2(d Cxyn1d)(Cxxfxd xxfd)(依次通过 n 次积分, 可得含 n 个任意常数的通解 ., )(xf21CxC型的微分方程型的微分方程 机动 目录 上页 下页
27、 返回 结束 例例1. .cos2xeyx 求解解解: 12cosCxdxeyx 12sin21Cxexxey241xey2811121CC此处xsin21xC32CxCxcos21CxC机动 目录 上页 下页 返回 结束 ,00tx例例2. 质量为 m 的质点受力F 的作用沿 ox 轴作直线运动,在开始时刻,)0(0FF随着时间的增大 , 此力 F 均匀地减直到 t = T 时 F(T) = 0 . 如果开始时质点在原点, 解解: 据题意有)(dd22tFtxmtFoT0FF)1(0TtmF0dd0ttx)1(0TtFt = 0 时设力 F 仅是时间 t 的函数: F = F (t) . 小
28、,求质点的运动规律. 初初速度为0, 且对方程两边积分, 得 机动 目录 上页 下页 返回 结束 120)2(ddCTttmFtx利用初始条件, 01C得于是)2(dd20TttmFtx两边再积分得2320)62(CTttmFx再利用00tx, 02C得故所求质点运动规律为)3(2320TttmFx0dd0ttx机动 目录 上页 下页 返回 结束 ),(yxfy 型的微分方程型的微分方程 设, )(xpy ,py 则原方程化为一阶方程),(pxfp 设其通解为),(1Cxp则得),(1Cxy再一次积分, 得原方程的通解21d),(CxCxy二、二、机动 目录 上页 下页 返回 结束 例例3.
29、求解yxyx 2)1(2,10 xy3 0 xy解解: ),(xpy 设,py 则代入方程得pxpx2)1(2分离变量)1(d2d2xxxpp积分得,ln)1(lnln12Cxp)1(21xCp即,3 0 xy利用, 31C得于是有)1(32xy两端再积分得233Cxxy利用,10 xy, 12C得133xxy因此所求特解为机动 目录 上页 下页 返回 结束 例例4. 绳索仅受重力作用而下垂,解解: 取坐标系如图. 考察最低点 A 到sg( : 密度, s :弧长)弧段重力大小按静力平衡条件, 有,cosHTsa1tanMsgoyx)(gHa其中sgTsinyxyxd102a1故有211yay
30、 设有一均匀, 柔软的绳索, 两端固定, 问该绳索的平衡状态是怎样的曲线 ? 任意点M ( x, y ) 弧段的受力情况: T A 点受水平张力 HM 点受切向张力T两式相除得HA机动 目录 上页 下页 返回 结束 MsgoyxHA211yya , aOA 设则得定解问题: , 0ayx0 0 xy),(xpy 令,ddxpy 则原方程化为pdxad1两端积分得)1(lnshAr2ppp,shAr1Cpax0 0 xy由, 01C得则有axysh两端积分得,ch2Cayax, 0ayx由02C得故所求绳索的形状为axaych)(2axaxeea悬悬 链链 线线a21p机动 目录 上页 下页 返
31、回 结束 三、三、),(yyfy 型的微分方程型的微分方程 令),(ypy xpydd 则xyypddddyppdd故方程化为),(ddpyfypp设其通解为),(1Cyp即得),(1Cyy分离变量后积分, 得原方程的通解21),(dCxCyy机动 目录 上页 下页 返回 结束 例例5. 求解.02 yyy代入方程得,0dd2 pyppyyyppdd即两端积分得,lnlnln1Cyp,1yCp 即yCy1(一阶线性齐次方程)故所求通解为xCeCy12解解:),(ypy 设xpydd 则xyypddddyppdd机动 目录 上页 下页 返回 结束 M : 地球质量m : 物体质量例例6. 静止开
32、始落向地面, 求它落到地面时的速度和所需时间(不计空气阻力). 解解: 如图所示选取坐标系. 则有定解问题:22ddtym2yMmk,0lyt00ty,ddtyv 设tvtydddd22则tyyvddddyvvdd代入方程得,dd2yyMkvv积分得122CyMkv一个离地面很高的物体, 受地球引力的作用由 yoRl机动 目录 上页 下页 返回 结束 ,1122lyMkv,ddtyv yyllMkv2即tdyylyMkld2两端积分得Mklt2,0lyt利用, 02C得因此有)arccos(22lylyylMkltlylyylarccos22C, 0000lyyvttt利用lMkC21得注意注
33、意“”号号机动 目录 上页 下页 返回 结束 由于 y = R 时,gy 由原方程可得MRgk2因此落到地面( y = R )时的速度和所需时间分别为)arccos(212lRlRRlglRtRylRlRgvRy)(222ddtym,2yMmkyyllMkv2)arccos(22lylyylMkltyoRl机动 目录 上页 下页 返回 结束 说明说明: 若此例改为如图所示的坐标系, Ryol22ddtym2)(ylMmk,00ty00ty,令tyvdd解方程可得)11(22lylMkv问问: 此时开方根号前应取什么符号? 说明道理 .则定解问题为机动 目录 上页 下页 返回 结束 例例7. 解
34、初值问题解解: 令02 yey,00 xy10 xy),(ypy ,ddyppy 则代入方程得yeppydd2积分得1221221Cepy利用初始条件, 0100 xyyp, 01C得根据yepxydd积分得,2Cxey, 00 xy再由12C得故所求特解为xey1得机动 目录 上页 下页 返回 结束 为曲边的曲边梯形面积上述两直线与 x 轴围成的三角形面例例8.)0()(xxy设函数二阶可导, 且, 0)( xy)(xyy 过曲线上任一点 P(x, y) 作该曲线的切线及 x 轴的垂线,1S区间 0, x 上以,2S记为)(xy, 1221 SS且)(xyy 求解解:, 0)(, 1)0(x
35、yy因为. 0)(xy所以于是cot2121yS yy222S)(xyy 设曲线在点 P(x, y) 处的切线倾角为 ,满足的方程 ., 1)0(y积记为( 99 考研考研 )ttySxd)(02Pxy1S1oyx机动 目录 上页 下页 返回 结束 再利用 y (0) = 1 得利用,1221 SS得xttyyy021d)(两边对 x 求导, 得2)( yyy 定解条件为)0(, 1)0(yy),(ypy 令方程化为,ddyppy 则yyppdd,1yCp 解得利用定解条件得,11C, yy 再解得,2xeCy , 12C故所求曲线方程为xey 2ddpyppy12SPxy1S1oyx机动 目
36、录 上页 下页 返回 结束 内容小结内容小结可降阶微分方程的解法 降阶法)(. 1)(xfyn逐次积分),(. 2yxfy 令, )(xpy xpydd 则),(. 3yyfy 令, )(ypy yppydd 则机动 目录 上页 下页 返回 结束 思考与练习思考与练习1. 方程)(yfy 如何代换求解 ?答答: 令)(xpy 或)(ypy 一般说, 用前者方便些. 均可. 有时用后者方便 . 例如,2)(yey 2. 解二阶可降阶微分方程初值问题需注意哪些问题 ?答答: (1) 一般情况 , 边解边定常数计算简便.(2) 遇到开平方时, 要根据题意确定正负号.例例6例例7机动 目录 上页 下页
37、 返回 结束 P292 1 (5) , (7) , (10) ; 2 (3) , (6) ; 3 ; 4 作业作业 第七节 目录 上页 下页 返回 结束 oyx) 1 , 0(A速度大小为 2v, 方向指向A , )0 , 1(),(yxBtv提示提示: 设 t 时刻 B 位于 ( x, y ), 如图所示, 则有 ytsvdd2xysxd112xytxd1dd12txydd12去分母后两边对 x 求导, 得xtvxyxdddd22又由于ytv 1x设物体 A 从点( 0, 1 )出发, 以大小为常数 v 备用题备用题的速度沿 y 轴正向运动, 物体 B 从 (1, 0 ) 出发, 试建立物体
38、 B 的运动轨迹应满足的微分方程及初始条件.机动 目录 上页 下页 返回 结束 2)dd(121ddxyvxt0121dd222yxyx代入 式得所求微分方程:其初始条件为, 01xy11xyoyxA)0 , 1(),(yxBtv机动 目录 上页 下页 返回 结束 机动 目录 上页 下页 返回 结束 高阶线性微分方程解的结构 第七节二、线性齐次方程解的结构二、线性齐次方程解的结构 三、线性非齐次方程解的结构三、线性非齐次方程解的结构 *四、常数变易法四、常数变易法 一、二阶线性微分方程举例一、二阶线性微分方程举例 第十二章 一、二阶线性微分方程举例一、二阶线性微分方程举例 当重力与弹性力抵消时
39、, 物体处于 平衡状态, 例例1. 质量为m的物体自由悬挂在一端固定的弹簧上,力作用下作往复运动,xxo解解:阻力的大小与运动速度下拉物体使它离开平衡位置后放开,若用手向物体在弹性力与阻取平衡时物体的位置为坐标原点,建立坐标系如图. 设时刻 t 物位移为 x(t).(1) 自由振动情况.弹性恢复力物体所受的力有:(虎克定律)xcf成正比, 方向相反.建立位移满足的微分方程.机动 目录 上页 下页 返回 结束 据牛顿第二定律得txxctxmdddd22,2mck,2mn令则得有阻尼自由振动方程:0dd2dd222xktxntx阻力txRdd(2) 强迫振动情况. 若物体在运动过程中还受铅直外力作
40、用,t pHFsin,令mhH则得强迫振动方程:t phxktxntxsindd2dd222机动 目录 上页 下页 返回 结束 求电容器两两极板间电压 0ddiRCqtiLE例例2. 联组成的电路, 其中R , L , C 为常数 ,sintEEm所满足的微分方程 .cu提示提示: 设电路中电流为 i(t),LERKCqqi上的电量为 q(t) , 自感电动势为,LE由电学知,ddtqi ,CquCtiLELdd根据回路电压定律:设有一个电阻 R , 自感L ,电容 C 和电源 E 串极板机动 目录 上页 下页 返回 结束 在闭合回路中, 所有支路上的电压降为 0LCLR1,20令tLCEut
41、utumCCCsindd2dd2022串联电路的振荡方程:如果电容器充电后撤去电源 ( E = 0 ) , 则得0dd2dd2022CCCututuLERKCqqi22ddtuCLCtuCRCddCutEmsin机动 目录 上页 下页 返回 结束 化为关于cu的方程:,ddtuCiC注意故有 n 阶线性微分方程阶线性微分方程的一般形式为方程的共性 为二阶线性微分方程. 例例1例例2, )()()(xfyxqyxpy 可归结为同一形式:)()()()(1) 1(1)(xfyxayxayxaynnnn时, 称为非齐次方程 ; 0)(xf时, 称为齐次方程.复习复习: 一阶线性方程)()(xQyxP
42、y通解:xexQexxPxxPd)(d)(d)(xxPeCyd)(非齐次方程特解齐次方程通解Yy0)(xf机动 目录 上页 下页 返回 结束 )(11yCxP )(11yCxQ0证毕二、线性齐次方程解的结构二、线性齐次方程解的结构)(),(21xyxy若函数是二阶线性齐次方程0)()( yxQyxPy的两个解,也是该方程的解.证证:)()(2211xyCxyCy将代入方程左边, 得 11 yC22yC 22yC22yC)()(1111yxQyxPyC )()(2222yxQyxPyC (叠加原理) )()(2211xyCxyCy则),(21为任意常数CC定理定理1.机动 目录 上页 下页 返回
43、 结束 说明说明:不一定是所给二阶方程的通解.例如,)(1xy是某二阶齐次方程的解,)(2)(12xyxy也是齐次方程的解 )()2()()(1212211xyCCxyCxyC并不是通解但是)()(2211xyCxyCy则为解决通解的判别问题, 下面引入函数的线性相关与 线性无关概念. 机动 目录 上页 下页 返回 结束 定义定义:)(,),(),(21xyxyxyn设是定义在区间 I 上的 n 个函数,21nkkk使得Ixxykxykxyknn, 0)()()(2211则称这 n个函数在 I 上线性相关线性相关, 否则称为线性无关线性无关.例如, ,sin,cos,122xx在( , )上都
44、有0sincos122xx故它们在任何区间 I 上都线性相关线性相关;又如,,12xx若在某区间 I 上,02321xkxkk则根据二次多项式至多只有两个零点 ,321,kkk必需全为 0 ,可见2,1xx故在任何区间 I 上都 线性无关线性无关.若存在不全为不全为 0 的常数机动 目录 上页 下页 返回 结束 两个函数在区间 I 上线性相关与线性无关的充要条件充要条件:)(),(21xyxy线性相关存在不全为 0 的21, kk使0)()(2211xykxyk1221)()(kkxyxy( 无妨设)01k)(),(21xyxy线性无关)()(21xyxy常数思考思考:)(),(21xyxy若
45、中有一个恒为 0, 则)(),(21xyxy必线性相关相关0)()()()(2121xyxyxyxy(证明略)21, yy可微函数线性无关机动 目录 上页 下页 返回 结束 定理定理 2.)(),(21xyxy若是二阶线性齐次方程的两个线性无关特解, 则)()(2211xyCxyCy数) 是该方程的通解.例如例如, 方程0 yy有特解,cos1xy ,sin2xy 且常数,故方程的通解为xCxCysincos21(自证) 推论推论. nyyy,21若是 n 阶齐次方程 0)()()(1) 1(1)(yxayxayxaynnnn的 n 个线性无关解, 则方程的通解为)(11为任意常数knnCyC
46、yCyxytan21y为任意常21,(CC机动 目录 上页 下页 返回 结束 三、线性非齐次方程解的结构三、线性非齐次方程解的结构 )(* xy设是二阶非齐次方程的一个特解, )(*)(xyxYyY (x) 是相应齐次方程的通解,定理定理 3.)()()(xfyxQyxPy 则是非齐次方程的通解 .证证: 将)(*)(xyxYy代入方程左端, 得)*( yY)*( )(yYxP)*)(*)(*(yxQyxPy )()(YxQYxPY )(0)(xfxf)*( )(yYxQ复习 目录 上页 下页 返回 结束 )(*)(xyxYy故是非齐次方程的解, 又Y 中含有两个独立任意常数,例如例如, 方程
47、xyy 有特解xy *xCxCYsincos21对应齐次方程0 yy有通解因此该方程的通解为xxCxCysincos21证毕因而 也是通解 .机动 目录 上页 下页 返回 结束 定理定理 4.), ,2, 1()(nkxyk设分别是方程的特解,是方程),2, 1()()()(nkxfyxQyxPyk nkkyy1则)()()(1xfyxQyxPynkk 的特解. (非齐次方程之解的叠加原理) 定理3, 定理4 均可推广到 n 阶线性非齐次方程. 机动 目录 上页 下页 返回 结束 定理定理 5.)(,),(),(21xyxyxyn设是对应齐次方程的 n 个线性)(*)()()(2211xyxyCxyCxyCynn无关特解, 给定 n 阶非齐次线性方程)()()() 1(1)(xfyxayxaynnn)()(xyxY)(* xy是非齐次方程的特解, 则非齐次方程的通解为齐次方程通解非齐次方程特解机动 目录 上页 下页 返回 结束 常数, 则该方程的通解是 ( ).321,yyy设线性无关函数都是二阶非齐次线性方程)()()(xfyxQyxPy 的解, 21,CC是任意;)(32211yyCyCA;)()(3212211yCCyCyCB;)1()(3212211yCCyCyCC.)1()(3212211yCCyCyCDD例例3.提示提示:3231
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 广宗冯寨中学开学通知书
- 废弃矿坑治理监理通知书
- 建业小区封控通知书
- 建瓯工会慰问活动通知书
- 开启气象灾害通知书
- 张家口放假延期通知书
- 征集房车改装通知书
- 徒步返乡官方通知书
- 2023年益阳辅警协警招聘考试真题附答案详解ab卷
- 2023年阳江辅警招聘考试题库含答案详解(典型题)
- 游戏陪玩平台入驻协议2025
- 工业视觉方案设计
- 2025中国能源建设集团云南火电建设有限公司校园招聘(46人)笔试历年参考题剖析附带答案详解(3卷合一)
- 2025贵州毕节市中医医院招聘暨人才引进编外聘用专业技术人员78人笔试考试参考试题及答案解析
- 新生儿呼吸系统疾病护理评估与干预
- 医护人员防范暴力
- (新版)发电厂全厂停电事故应急预案x
- 小儿肺炎健康宣教
- 慢性阻塞性肺病常见症状详解及护理方法
- 2025版慢性阻塞性肺疾病症状与健康管理指南
- 电焊工考试题及答案下载
评论
0/150
提交评论