




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、3.1.1 3.1.1 空间向量及其加减运算空间向量及其加减运算定义:定义: 既有大小又有方向的量叫向量既有大小又有方向的量叫向量 几何表示法:几何表示法: 用有向线段表示;用有向线段表示; 字母表示法:字母表示法:用字母用字母a a、b b等或者等或者用有向线段用有向线段的起点与终点字母的起点与终点字母 表示表示AB相等的向量:相等的向量: 长度相等且方向相同的向量长度相等且方向相同的向量 ABCD向量的加法:向量的加法:aba+b平行四边形法则平行四边形法则aba+b三角形法则三角形法则(首尾相连首尾相连)向量的减法向量的减法aba-b三角形法则三角形法则 减向量减向量终点指向终点指向被减
2、向量被减向量终点终点平面向量的加法运算律平面向量的加法运算律加法交换律:加法交换律: abba 加法结合律:加法结合律: (ab)ca(bc) 首尾相接的若干向量之和,等于由起始向量的首尾相接的若干向量之和,等于由起始向量的起点指向末尾向量的终点的向量即:起点指向末尾向量的终点的向量即:nnnAAAAAAAAAA114332211A2A3A4A1nAnA首尾相接的若干向量构成一个封闭图形,则它首尾相接的若干向量构成一个封闭图形,则它们的和为零向量即:们的和为零向量即:011433221AAAAAAAAAAnnn1A2A3A4AnA1nA空间向量:空间向量:空间中具有空间中具有大小大小和和方向方
3、向的量叫做向量的量叫做向量定义:定义:表示方法:表示方法:空间向量的表示方法和平面向量一样;空间向量的表示方法和平面向量一样;空间任意两个向量都可以用同一平面内空间任意两个向量都可以用同一平面内 的两条有向线段表示的两条有向线段表示同向且等长的有向线段表示同一向量或同向且等长的有向线段表示同一向量或相等的向量;相等的向量;ABOAOBa + babABbCOOCOACAa - - b加法交换律:加法交换律:a + b = b + a;加法结合律:加法结合律:(a + b) + c =a + (b + c);abca + b + c abca + b + c a + b b + c 空间向量的运
4、算就是平面向量运算的推广空间向量的运算就是平面向量运算的推广两个向量相加的平行四边形法则在空间仍两个向量相加的平行四边形法则在空间仍然成立然成立空间向量的加法运算可以推广至若干个向空间向量的加法运算可以推广至若干个向量相加量相加例例1 1、给出以下命题:、给出以下命题:(1 1)两个空间向量相等,则它们的起点、终点相同;)两个空间向量相等,则它们的起点、终点相同;(2 2)若空间向量)若空间向量 满足满足 ,则,则 ;(3 3)在正方体)在正方体 中,必有中,必有 ;(4 4)若空间向量)若空间向量 满足满足 ,则,则 ;(5 5)空间中任意两个单位向量必相等。)空间中任意两个单位向量必相等。
5、其中不正确命题的个数是(其中不正确命题的个数是( )A.1 B.2 C.3 D.4A.1 B.2 C.3 D.4a b 、ab| | | |ab1 111ABCD ABCD11ACAC m n p 、,mn np mp 如图所示,长方体中,如图所示,长方体中,AD=AD=2 2,AA1AA1= =1 1,ABAB=3=3。(1 1)是写出与是写出与 相等的所有向量;相等的所有向量;(2 2)写出与向量)写出与向量 的相反向量。的相反向量。AB 1AA化简结果的向量:列向量表达式,并标出,化简下已知平行六面体DCBAABCD ;BCAB ;AAADABABCDABCD例例2(4)ACD BDC
6、(3)ABCBAA ;BCAB 解:解:ABCDABCDBCAB AC;AAADABAAADABAAAC CCAC AC 始点相同的三个不共面向量之和,等于以这三个始点相同的三个不共面向量之和,等于以这三个向量为棱的平行六面体的以公共始点为始点的对角线向量为棱的平行六面体的以公共始点为始点的对角线所示向量所示向量例例3 3、在如图所示的平行六面体中、在如图所示的平行六面体中, , 求证:求证:2.ACABADAC A AB BC CD DA AB BC CD D,ABCDA B C D 已知平行六面体已知平行六面体 则则下列四式中:下列四式中:其中正确的是其中正确的是 。(1);(2);(3)
7、;(4).ABCBACACABB CCCAACCABBBBCC CAC 例例4 4、如图所示,在正方体、如图所示,在正方体 中,下中,下列各式中运算的结果为向量列各式中运算的结果为向量 的共有(的共有( )1111ABCDABC D11111111111111(1)();(2)();(3)();(4)().ABBCCCAAA DD CABBBB CAAA BB C A.1 B.2 C.3 D.4A.1 B.2 C.3 D.41AC 变式:变式:()()(2)ABCDACBDABCBADAD 化简:(1)平面向量平面向量概念概念加法加法减法减法数乘数乘运算运算运运算算律律定义定义表示法表示法相等向量相等向量减法减法: :三角形法则三角形法则加法加法: :三角形法则或三角
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 水费计收机制方案(3篇)
- 公司合理持股方案(3篇)
- DB23-T3024-2021-酸浆栽培技术规程-黑龙江省
- DB23-T2915-2021-刺五加野生资源恢复技术规程-黑龙江省
- DB23-T2820-2021-企业双重预防机制信息系统建设评估指南-黑龙江省
- 学校周末策划管理制度
- 公司行政经费管理制度
- 公司保密工作管理制度
- 农村初中后勤管理制度
- 外包保洁公司管理制度
- DB32/T 3891-2020美甲及手足护理服务规范
- 教师职业道德与教育法规
- 2025年保定市中考二模数学试题及答案
- 室内装修工地管理手册
- 上海市徐汇区2025届七年级生物第二学期期末教学质量检测试题含解析
- 2025年广东省广州市南沙区中考一模语文试题及答案
- 水利工程课件
- 专利申请流程PPT课件
- 迪斯尼最爱英文儿歌歌词
- 消弧线圈接地变容量计算
- 道岔护轨各部尺寸及测量方法
评论
0/150
提交评论