简单的OFDM仿真信道估计有BER曲线_第1页
简单的OFDM仿真信道估计有BER曲线_第2页
简单的OFDM仿真信道估计有BER曲线_第3页
简单的OFDM仿真信道估计有BER曲线_第4页
简单的OFDM仿真信道估计有BER曲线_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、clear all;close all;fprintf( 'n OFDM仿真n n') ;% - %                   参数定义                     % - %IFFT_bin_length = 1024;carrier_count   = 200;bits_per

2、_symbol = 2;symbols_per_carrier = 50;% 子载波数            200% 位数/ 符号          2% 符号数/ 载波        50% 训练符号数          10% 循环前缀长度        T/4(作者注明)

3、  All-zero CP  % 调制方式            QDPSK% 多径信道数          2、3、4(缺省)% 信道最大时延        7 (单位数据符号)% 仿真条件            收发之间严格同步 %SNR=input('SNR=

4、9;);    % 输入信噪比参数SNR=3:14;%定义信噪比范围BER=zeros(1,length(SNR);baseband_out_length = carrier_count * symbols_per_carrier * bits_per_symbol;% 计算发送的二进制序列长度carriers = (1: carrier_count) + (floor(IFFT_bin_length/4) - floor(carrier_count/2);   % 坐标: (1 to 200) + 156 ,  157 - 356c

5、onjugate_carriers=IFFT_bin_length-carriers+2;  % 坐标 :1024 - (157:356) + 2 = 1026 - (157:356) = (869:670) % 构造共轭时间载波矩阵,以便应用所谓的RCC,Reduced Computational Complexity算法,即ifft之后结果为实数 % Define the conjugate time-carrier matrix% 也可以用flipdim函数构造对称共轭矩阵% - %         

6、0;         信号发射                     % - %out = rand(1,baseband_out_length);%baseband_out1 = round(out) ;%baseband_out2 = floor(out*2) ;%baseband_out3 = ceil(out*2)-1 ;%baseband_out4 = randint(1,baseband_ou

7、t_length);% 四种生成发送的二进制序列的方法,任取一种产生要发送的二进制序列%if (baseband_out1 = baseband_out2 & baseband_out1 = baseband_out3 )%   fprintf('Transmission Sequence Generated n n');%   baseband_out = baseband_out1 ;%else %   fprintf('Check Code! n n');%end% 验证四种生成发送的二进

8、制序列的方法baseband_out=round( rand(1,baseband_out_length);convert_matrix = reshape(baseband_out,bits_per_symbol,length(baseband_out)/bits_per_symbol);for k = 1length(baseband_out)/bits_per_symbol),  modulo_baseband(k) = 0; for i = 1:bits_per_symbol     modulo_baseband(k) =

9、modulo_baseband(k) + convert_matrix(i,k)* 2(bits_per_symbol - i); end       end% 每2个比特转化为整数 0至3% 采用'left-msb'方式%-%  Test by lavabin%  A built-in function of directly change binary bits into decimal numbers%-%convert_matrix1 = zeros(length(baseband_out)

10、/bits_per_symbol,bits_per_symbol);%convert_matrix1 = convert_matrix' ;%Test_convert_matrix1 = bi2de(convert_matrix1,bits_per_symbol,'left-msb');%Test_convert_matrix2 = bi2de(convert_matrix1,bits_per_symbol,'right-msb');% 函数说明:% BI2DE Convert binary vectors to decimal numbers.% D

11、= BI2DE(B) converts a binary vector B to a decimal value D. When B is% a matrix, the conversion is performed row-wise and the output D is a% column vector of decimal values. The default orientation of thebinary% input is Right-MSB; the first element in B represents the least significant bit.%if (mod

12、ulo_baseband = Test_convert_matrix1') %   fprintf('modulo_baseband = Test_convert_matrix1 nnn');%else if (modulo_baseband = Test_convert_matrix2')     %    fprintf('modulo_baseband = Test_convert_matrix2 nnn');%    else% 

13、   fprintf('modulo_baseband = any Test_convert_matrix nnn'); %    end%end% we get the result "modulo_baseband = Test_convert_matrix1".%-carrier_matrix = reshape(modulo_baseband,carrier_count,symbols_per_carrier)'% 生成时间载波矩阵% - %        

14、60;          QDPSK调制                   % - %carrier_matrix = zeros(1,carrier_count); carrier_matrix;  % 添加一个差分调制的初始相位,为0for i = 2symbols_per_carrier + 1)    carrier_matrix(i, = rem(carrier_m

15、atrix(i, + carrier_matrix (i-1, 2bits_per_symbol) ;  % 差分调制 endcarrier_matrix = carrier_matrix*(2*pi)/(2bits_per_symbol) ;  % 产生差分相位X, Y=pol2cart(carrier_matrix, ones(size(carrier_matrix,1),size(carrier_matrix,2); % 由极坐标向复数坐标转化 第一参数为相位 第二参数为幅度% Carrier_matrix contains all the pha

16、se information and all the amplitudes are the same1. complex_carrier_matrix = complex(X, Y) ;% 添加训练序列 training_symbols = 1 j j 1 -1 -j -j -1 1 j j 1 -1 -j -j -1 1 j j 1 -1 -j -j -1 1 j j 1 -1 -j -j -1 1 j j 1 -1 .-j -j -1 1 j j 1 -1 -j -j -1 1 j j 1 -1 -j -j -1 1 j j 1 -1 -j -j -1 1 j j 1 -1 -j -j -

17、1 1 j j 1 -1 -j -j -1 .1 j j 1 -1 -j -j -1 1 j j 1 -1 -j -j -1 1 j j 1 -1 -j -j -1 1 j j 1 -1 -j -j -1 1 j j 1 -1 -j -j -1 1 j j 1 .-1 -j -j -1 1 j j 1 -1 -j -j -1 1 j j 1 -1 -j -j -1 1 j j 1 -1 -j -j -1 1 j j 1 -1 -j -j -1 1 j j 1 -1 -j -j .-1 1 j j 1 -1 -j -j -1 1 j j 1 -1 -j -j -1 1 j j 1 -1 -j -

18、j -1 1 j j 1 -1 -j -j -1 ; % 25 times "1 j j 1" , 25 times "-1 -j -j -1", totally 200 symbols as a rowtraining_symbols = cat(1, training_symbols, training_symbols) ;  training_symbols = cat(1, training_symbols, training_symbols) ; % Production of 4 rows of training_symb

19、olscomplex_carrier_matrix = cat(1, training_symbols, complex_carrier_matrix) ; % 训练序列与数据合并 % block-type pilot symbolsIFFT_modulation = zeros(4 + symbols_per_carrier + 1,IFFT_bin_length) ;% Here a row vector of zeros is between training symbols and data symbols! % 4 training symbols and 1 zero symbol

20、% every OFDM symbol takes a row of "IFFT_modulation" IFFT_modulation(: , carriers) = complex_carrier_matrix;IFFT_modulation(: , conjugate_carriers) = conj(complex_carrier_matrix) ;%-%   Test by lavabin  - Find the indices of zeros %index_of_zeros = zeros(symbols_per_car

21、rier,IFFT_bin_length - 2*carrier_count);%IFFT_modulation1 = zeros(4 + symbols_per_carrier + 1,IFFT_bin_length);%IFFT_modulation2 = zeros(4 + symbols_per_carrier + 1,IFFT_bin_length);%IFFT_modulation1(6:symbols_per_carrier+5, = IFFT_modulation(6:symbols_per_carrier+5,=0 ;%for i = 1:symbols_per_carrie

22、r%index_of_zeros(i, = find(IFFT_modulation1(i+5,=1);%end%-time_wave_matrix = ifft(IFFT_modulation') ; % 进行IFFT操作time_wave_matrix = time_wave_matrix'  % If X is a matrix, ifft returns the inverse Fourier transform of each column of the matrix.for i = 1: 4 + symbols_per_carrier + 1&#

23、160;  windowed_time_wave_matrix( i, : ) = real(time_wave_matrix( i, : ) ;end% get the real part of the result of IFFT% 这一步可以省略,因为IFFT结果都是实数% 由此可以看出,只是取了IFFT之后载波上的点,并未进行CP的复制和添加endofdm_modulation = reshape(windowed_time_wave_matrix',1, IFFT_bin_length*(4 + symbols_per_carrier + 1) ) ;% P2S o

24、peration%-%   Test by lavabin%   Another way of matrix transition%ofdm_modulation_tmp = windowed_time_wave_matrix.'%ofdm_modulation_test = ofdm_modulation_tmp('%if (ofdm_modulation_test = ofdm_modulation)% fprintf('ofdm_modulation_test = ofdm_modulation nnn');%els

25、e%fprintf('ofdm_modulation_test = ofdm_modulation nnn');%end % We get the result "ofdm_modulation_test = ofdm_modulation" .%-Tx_data=ofdm_modulation;% - %                   信道模拟          

26、           % - %d1= 4; a1 = 0.2; d2 = 5; a2 = 0.3; d3 = 6; a3 = 0.4; d4 = 7; a4 = 0.5;  %信道模拟  copy1 = zeros(size(Tx_data) ;for i = 1 + d1: length(Tx_data)  copy1(i) = a1*Tx_data( i - d1) ;endcopy2 = zeros(size(Tx_data) ) ;for i = 1 +

27、d2: length( Tx_data)copy2(i) = a2*Tx_data( i - d2) ;endcopy3 = zeros(size(Tx_data) ) ;for i = 1 + d3: length(Tx_data)copy3(i) = a3*Tx_data ( i - d3) ;endcopy4 = zeros(size(Tx_data) ) ;for i = 1 + d4: length( Tx_data)copy4(i) = a4*Tx_data(i - d4) ;endTx_data = Tx_data + copy1 + copy2 + copy3 + copy4;

28、 % 4 multi-pathsTx_signal_power = var(Tx_data);for idx=1:length(SNR)%monte carlo 仿真模拟    linear_SNR = 10( SNR(idx) /10) ;noise_sigma = Tx_signal_power / linear_SNR;noise_scale_factor = sqrt(noise_sigma) ;noise = randn(1, length(Tx_data) )*noise_scale_factor;Rx_Data = Tx_data + noise;% - %&

29、#160;                 信号接收                      % - % Rx_Data_matrix = reshape(Rx_Data, IFFT_bin_length, 4 + symbols_per_carrier + 1) ;Rx_spectrum = fft(Rx_Data_matrix) ; %

30、60; Suppose precise synchronazition between Tx and RxRx_carriers = Rx_spectrum( carriers, : )'Rx_training_symbols = Rx_carriers( (1: 4) , : ) ;Rx_carriers = Rx_carriers(5: 55), : ) ;% - %                    信道估计  

31、60;                 % - %   Rx_training_symbols = Rx_training_symbols./ training_symbols;Rx_training_symbols_deno = Rx_training_symbols.2;Rx_training_symbols_deno = Rx_training_symbols_deno(1,+Rx_training_symbols_deno(2,+Rx_traini

32、ng_symbols_deno(3,+Rx_training_symbols_deno(4, ;Rx_training_symbols_nume = Rx_training_symbols(1, : ) +Rx_training_symbols(2, : ) + Rx_training_symbols(3, : ) +Rx_training_symbols(4, : ) ;Rx_training_symbols_nume = conj(Rx_training_symbols_nume) ;% 取4个向量的导频符号是为了进行平均优化% 都是针对 “行向量”即单个的OFDM符号 进行操作% 原理:

33、寻求1/H,对FFT之后的数据进行频域补偿% 1/H = conj(H)/H2 because H2 = H * conj(H) Rx_training_symbols = Rx_training_symbols_nume./Rx_training_symbols_deno;Rx_training_symbols = Rx_training_symbols_nume./Rx_training_symbols_deno;Rx_training_symbols_2 = cat(1, Rx_training_symbols,Rx_training_symbols) ;Rx_training_symb

34、ols_4 = cat(1, Rx_training_symbols_2,Rx_training_symbols_2) ;Rx_training_symbols_8 = cat(1, Rx_training_symbols_4,Rx_training_symbols_4) ;Rx_training_symbols_16 = cat(1, Rx_training_symbols_8, Rx_training_symbols_8) ;Rx_training_symbols_32 = cat(1, Rx_training_symbols_16, Rx_training_symbols_16) ;Rx

35、_training_symbols_48 = cat(1, Rx_training_symbols_32, Rx_training_symbols_16) ;Rx_training_symbols_50 = cat(1, Rx_training_symbols_48, Rx_training_symbols_2) ;Rx_training_symbols = cat(1, Rx_training_symbols_50,Rx_training_symbols) ;Rx_carriers = Rx_training_symbols.*Rx_carriers; % 进行频域单抽头均衡 Rx_phas

36、e = angle(Rx_carriers)*(180/pi) ;phase_negative = find(Rx_phase < 0) ;%-Test of Using "rem"-%Rx_phase1 = Rx_phase; %Rx_phase2 = Rx_phase;%Rx_phase1(phase_negative) = rem(Rx_phase1(phase_negative) + 360, 360) ;%Rx_phase2(phase_negative) = Rx_phase2(phase_negative) + 360 ;%if Rx_phase2(ph

37、ase_negative) = Rx_phase1(phase_negative)%fprintf('n There is no need using rem in negative phase transition.n')%else%    fprintf('n We need to use rem in negative phase transition.n')    %end%-Rx_phase(phase_negative) = rem(Rx_phase(phase_negative) + 360, 360) ;&

38、#160; % 把负的相位转化为正的相位Rx_decoded_phase = diff(Rx_phase) ;%  这也是为什么要在前面加上初始相位的原因 % “Here a row vector of zeros is between training symbols and data symbols!”phase_negative = find(Rx_decoded_phase < 0) ;Rx_decoded_phase(phase_negative)= rem(Rx_decoded_phase(phase_negative) + 360, 360)

39、;  % 再次把负的相位转化为正的相位% - %                   QDPSK解调                   % - % base_phase = 360 /2bits_per_symbol;delta_phase = base_phase /2;Rx_decoded_symbols = zeros(size(

40、Rx_decoded_phase,1),size(Rx_decoded_phase,2) ;for i = 1: (2bits_per_symbol - 1)  center_phase = base_phase*i;  plus_delta = center_phase + delta_phase;  % Decision threshold 1  minus_delta = center_phase - delta_phase; % Decision threshold 2  decoded

41、 = find(Rx_decoded_phase <= plus_delta)&(Rx_decoded_phase > minus_delta) ;  Rx_decoded_symbols(decoded) = i;end%  仅仅对三个区域进行判决%  剩下的区域就是零相位的空间了%  这个区域在定义解调矩阵时已经定义为零Rx_serial_symbols = reshape(Rx_decoded_symbols',1,size(Rx_decoded_symbols, 1)*size(Rx_decoded_symbols,2) ;for i =

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论