_双曲线的简单几何性质((二)_第1页
_双曲线的简单几何性质((二)_第2页
_双曲线的简单几何性质((二)_第3页
_双曲线的简单几何性质((二)_第4页
_双曲线的简单几何性质((二)_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、双曲线的性质双曲线的性质( (二二) )复复 习习ax或ax ay ay或)0 ,( a), 0(axaby xbay ace)(222bac其中关于关于坐标坐标轴和轴和原点原点都对都对称称性性质质双曲线双曲线) 0, 0(12222babyax) 0, 0(12222babxay范围范围对称对称 性性 顶点顶点 渐近渐近 线线离心离心 率率图象图象12222byax的方程为解:依题意可设双曲线8162aa,即10,45cace又3681022222acb1366422yx双曲线的方程为xy43渐近线方程为)0 ,10(),0 ,10(21FF 焦点.4516线和焦点坐标程,并且求出它的渐近出

2、双曲线的方轴上,中心在原点,写焦点在,离心率离是已知双曲线顶点间的距xe 练习练习 与双曲线与双曲线221916xy 有共同渐近线,且过点有共同渐近线,且过点( 3,2 3) ; 与双曲线与双曲线221164xy有公共焦点,且过点有公共焦点,且过点(3 2,2) 例例1 :求下列双曲线的标准方程:求下列双曲线的标准方程:例题讲解例题讲解 法二:法二:巧设方程巧设方程,运用待定系数法运用待定系数法.设双曲线方程为设双曲线方程为 ,22(0)916xy 22( 3)(2 3)916 14 221944双曲线的方程为xy法二:法二:设双曲线方程为设双曲线方程为221164xykk 16040kk 且

3、且221128xy 双曲线方程为双曲线方程为22(3 2)21164kk ,解之得解之得k=4,222221,2012(30)xymmm或设求得舍去总结:总结:“共渐近线共渐近线”的双曲线的应用的双曲线的应用222222221(0)xyabxyab 与共渐近线的双曲线系方程为, 为参数 ,0表示焦点在表示焦点在x轴上的双曲线;轴上的双曲线;a0),求点,求点M的轨迹的轨迹.cx2aacM解:解:设点设点M(x,y)到到l的距离为的距离为d,则,则|MFcda 即即222()xcycaaxc 化简得化简得(c2a2)x2 a2y2=a2 (c2 a2) 设设c2a2 =b2,22221xyab

4、(a0,b0)故点故点M的轨迹为实轴、虚轴长分别为的轨迹为实轴、虚轴长分别为2a、2b的双曲线的双曲线.222()|axcyacx 22224222(2)2axcxcyaa cxc x b2x2a2y2=a2b2即即就可化为就可化为:M点点M的轨迹也包括双的轨迹也包括双曲线的左支曲线的左支.双曲线的第二定义双曲线的第二定义 平面内,若平面内,若定点定点F不在定直线不在定直线l上,则到定点上,则到定点F的的距离与到定直线距离与到定直线l的距离比为常数的距离比为常数e(e1)的点的轨迹是的点的轨迹是双曲线双曲线。 定点定点F是是双曲线的焦点双曲线的焦点,定直线叫做,定直线叫做双曲线双曲线的准线的准

5、线,常数,常数e是是双曲线的离心率双曲线的离心率.对于双曲线对于双曲线22221xyab 是相应于右焦点是相应于右焦点F(c, 0)的的右准线右准线类似于椭圆类似于椭圆2axc 是相应于左焦点是相应于左焦点F(-c, 0)的的左准线左准线2axc xyoFlMF2axc l2axc 点点M到左焦点与左准线的距到左焦点与左准线的距离之比也满足第二定义离之比也满足第二定义.想一想:想一想:中心在原中心在原点,焦点在点,焦点在y轴上轴上的双曲线的准线的双曲线的准线方程是怎样的?方程是怎样的?xyoF相应于上焦点相应于上焦点F(c, 0)的是的是上准线上准线2yac 2yac 相应于下焦点相应于下焦点

6、F(-c, 0)的是的是下准线下准线2yac 2yac F基础练习基础练习1.双曲线的中心在原点双曲线的中心在原点,离心率为离心率为4, 一条准线方一条准线方 程是程是 ,求双曲线的方程求双曲线的方程.12x 22y1460 x 2. 双曲线双曲线4y2-x2=16的准线方程是的准线方程是;两准线间;两准线间 的距离是的距离是; 焦点到相应准线的距离是焦点到相应准线的距离是 .2 5y5 4 558 55 点评:点评:双曲线的焦点到相应准线的距离是双曲线的焦点到相应准线的距离是 2bc3.双曲线的渐近线方程为双曲线的渐近线方程为 一条准线方程一条准线方程 是是 , 则双曲线的方程是则双曲线的方

7、程是 . A. B. C. D.513x 12y,5x 22125 144xy 221144 25xy 22251144xy 22251144yx D4.双曲线双曲线 上的一点上的一点P到它的右焦点的到它的右焦点的 距离为距离为8, 那么那么P到它的左准线的距离到它的左准线的距离 .22164 36xy 965例例4、 已知双曲线已知双曲线221,169xy F1、F2是它的左、右焦点是它的左、右焦点. 设点设点A(9,2), 在曲线上求点在曲线上求点M,使,使 24|5MAMF 的值最小的值最小,并求这个最小值并求这个最小值.xyoF2MA165x 由已知:由已知:解:解:a=4, b=3,

8、 c=5,双曲线的右准线为双曲线的右准线为l:54e 作作MNl, AA1l, 垂足分别是垂足分别是N, A1,N2|5|4MFMN 24| |5MFMN A124| |5MAMFMAMN 1|AA 当且仅当当且仅当M是是 AA1与双曲线的交点时取等号与双曲线的交点时取等号,令令y=2, 解得解得:4 132x 4 13,2 ,3M 即即 29.5最最小小值值是是12 byax222( a b 0)12222 byax( a 0 b0) 222 ba(a 0 b0) c222 ba(a b0) c椭椭 圆圆双曲线双曲线方程方程a b c关系关系图象图象yXF10F2MXY0F1F2 p小小 结结渐近线渐近线离心率离心率顶点顶点对称性对称性范围范围 准线准线|x| a,|y|b|x| a,y R对称轴:对称轴:x轴,轴,y轴轴 对称中心:原点对称中心:原点对称轴:对称轴:x

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论