



版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、.全全国 2001 年 10 月系号与系统考试试题一、单项选择题 ( 本大题共16 小题,每小题2 分,共 32 分)1. 积分(t2) (t) dt等于()0A.2 (t)B.2 (t )C.(t2)D.2 (t2)2.已知系统微分方程为dy(t )2 y(t)2 f (t ),若y( 0 )4, f (t)(t),解得全响应为dt4e2t为(3y(t)1e2 t1,0,则全响应中)33C.D.强迫响应分量A. 零输入响应分量B. 零状态响应分量自由响应分量3.系统结构框图如下,该系统单位冲激响应h(t)的表达式为()A.1t x()x(T ) dTB.x(t )x(tT )C.1t ( )
2、(T )dD.(t )(t T )T4.信号f1(t ),f2(t)波形如图所示,设f(t )f1(t)f2(t )则f (0)为()A.0B.1C.2D.35.已知信号f (t )如图所示,则其傅里叶变换为()f2(t)11f1(t)A.Sa(B.Sa(1f (t )cost2)2)t1ttC.Sa(1)D.Sa(1)10 100)6.已知 f (t )F ( j )则信号f (2t5)的傅里叶变换为(11A.1F (j)ej 5B.F (j) ej 5C.F (j)ej5D.1F (j)e5j2222227.已知信号f (t )的傅里叶变换F ( j)(0)(0)则f (t)为()A.0S
3、a(0t )B.0Sa(0t)C.20Sa(0t )D.20Sa(0t)2te3t) (t)时,其零状态响应是28.已知一线性时不变系统,当输入x(t)(ey(t)(2et2e4t)(t ),则该系统的频率响应为()A.2(j4j1)B.2(j4j1)2 j52 j52 j52 j5C.(j4j1)D.(j4j1)2 j52 j52 j52 j59.信号f (t )e2t(t)的拉氏变换及收敛域为()A.1, Re(s)2B.1, Re(s)2s2s2C.1, Re( )2D.1, Re( )2s2ss2s10. 信号f (t )sin0(t2)( (t2)的拉氏变换为()A.2s2e2sB.
4、s2s2e2 sC.s202e2sD.s202e2 ss000011. 已知某系统的系统函数为H ( s),唯一决定该系统单位冲激响应h(t )函数形式的是();.A.H (s)的零点C. 系统的输入信号12.若f1(t)e2t(t ), f2(t )A.1112s s2C.11s12 s213.序列f (n)cosn (n2B.H (s)的极点D. 系统的输入信号与H ( s)的极点(t)则f1(t) f2(t )的拉氏变换为()B.11s12s2D.1114ss 22)(n5)的正确图形是()14.已知序列x1(n)和x2(n)如图( a)所示,则卷积y(n)x1( n) x2(n)的图形
5、为图 (b) 中的()15.图(b) 中与图 (a) 所示系统等价的系统是()16. 在下列表达式中:H ( z)Y(z)yf(n)h(n)f (n)F (z)H (z)h(n)yf(n) H ( z) F ( z)离散系统的系统函数的正确表达式为()A.B.C.D.二、填空题(本大题共9 小题,每小题 2 分,共 18 分)不写解答过程, 将正确的答案写在每小题的空格内。错填或不填均无分。17.f (t)(t )。18.sint(t1)(t 1)dt。0219.信号的频谱包括两个部分,它们分别是谱和谱20. 周期信号频谱的三个基本特点是( 1)离散性,(2)(, 3)。21. 连续系统模拟中
6、常用的理想运算器有和等(请列举出任意两种)。22.H ( s)随系统的输入信号的变化而变化的。23. 单位阶跃序列可用不同位移的序列之和来表示。24. 如图所示的离散系统的差分方程为。25. 利用 Z 变换可以将差分方程变换为Z 域的方程。三、计算题(本大题共10 小题,每小题5 分,共 50 分);.26. 在图 (a) 的串联电路中Us20 0V电感Lm(b) ,请写出其谐振频0=100 H,电流的频率特性曲线如图率0,并求出电阻R和谐振时的电容电压有效值Uc。27.已知信号f (t )如图所示,请画出信号f (1t)的波形,并注明坐标值。228.如图所示电路,已知us(t )2 2cos
7、tV求电阻 R 上所消耗的平均功率P。29. 一因果线性时不变系统的频率响应H ( j)2 j,当输入x(t )(sin0t ) (t )时,求输出y(t)。30. 已知f (t )如图所示,试求出f (t)的拉氏变换F (s)。31. 已知因果系统的系统函数H (s)s1,求当输入信号f (t )e3t(t)时,系统的输出y(t)。s25s632.sin 2 t(b) 所求,其相频特如图 (a) 所示系统,其中e(t )t,系统中理想带通滤波器的频率响应如图2性( )0,请分别画出y(t)和r (t)的频谱图,并注明坐标值。33.已知某线性时不变系统的单位冲激响应h(t )(t 1)利用卷积
8、积分求系统对输入f (t)e3t(t )的零状态响应y(t)。34.利用卷积定理求y(n)(1)n(n)(n1)。235. 已知 RLC 串联电路如图所示,其中R20, L1H , C0.2F , iL(0 )1A,uC(0 )1V输入信号ui(t )t (t );试画出该系统的复频域模型图并计算出电流。全全国 2001 年 10 月系号与系统考试试题参考答案一、单项选择题;.1.B2.C3.C4.B5.C 6.D7.A 8.A 9.B10.D11.B 12.B13. A14.C15. B16. A二、填空题17.f (t)18.119.振幅、相位20.离散性、收敛性、谐波性21.乘法器、加法
9、器和积分器等22.不23.单位(t )24.y(n)a1f (n)a2f (n1)a3f ( n2)25.代数三、计算题26. 解:0104rad / s,RUs20V200,I0100mAQ0L104100 1035,UcQUs520100VR20027. 解:只要求出 t=-1 、 1、2 点转换的 t 值即可。t=-1 转换的 t 值:令t=1 转换的 t 值:令t=2 转换的 t 值:令11,解出 t=2 ,函数值为 0;f (t)t21221t1,解出t=-2,函数值为2和;12142021t2,解出 t=-42,函数值为 0。28. 解:U222222V,PU28W1R29.解:X
10、 ( j)(sin0t) ej tdt(ej0tej0t)ejtdt02 j01ej0tejtdt0ej0tej tdt 2 j01ej (0)tdtdt0ej (0)tdt 2 j011j (12022 jj (0)0)0Y ( j )H ( j ) X ( )j20220f(t )30. 解:对 f (t )次微分f(t )(t1)(t2)(t4)1tf(t )1es1e2s10 124sstf ( )d1F ( s)10( )d,又10f( )d0(t)f11ess1e2sssF ( s)1sss31.解:F (s)1,s3s11ABCY(s)H (s)F ( s)s25s 6s 3(s
11、 3)2s 3s 2A(s3)2Y(s)s32,B ( s3)2Y( s)s31,D(s2)( s)s21;.Y (s)211( s3)2s3s2y(t)(2te3te3te2t) (t )32.解:y(t )e(t ) cos1000tsin 2 t2 tcos1000tr (t )y(t)h(t)sin 2 ty2(t )cos1000t设y1(t )2 t,Y1( j )g2(),Y2( j )( (1000)(1000)Y ( j)2 g2(1000)g2(1000 )y(t)的频谱图与 H(j )图相似,只是幅值为2,而r (t)的频谱图与y(t )的频谱图完全相同。Y ( j )2
12、33. 解:y(t )te3(t)(1)dte3 (t)d10019990 99910011e3tte3de3t1e3te311 e3(1t ) (t )13334. 解:y(n)(1)n(n)(n1)2f ( n)(n)f (n)又有f (n)f1(n)f2( n),则f1(n k ) f2( n m)f (n km)y( n)(1)n 1(n1)235. 解:电路的电压方程略111RI (s)LsI (s) LiL(0 )csI (s)suc(0 )s2代入初始条件:2I (s)sI (s) 11 I (s)110.2sss22I (s) sI (s) 1111两边同乘 s 得I ( s)
13、ss20.2s2sI ( s)I ( s)令Y( s)A (sB(sI ( s)s2I (s) s 5I (s) 11ss2s113s4s22s522ss3s4As22s 5s 12 j1 2 j )Y( s)s1 2 j6 j4 j1 2 j )Y (s)s1 2 j6 j4 js2s113s4s22s522ss1AB5s 1 2 js 1 2 jBs 1 2 j1151 6 j 116 j 1B4 js 1 2 j4 j s 1 2 j;.i (t )(t )6 j1e(1 2 j )t6 j 1 e(12 j )t (t ),经化简得4 j4 j(t ) 3ej 2 tej 2 t1 e
14、j 2 tej 2t (t )2e4ej(t)31 cos 2tsin 2t (t)e2e2002 年上半年全国高等教育自学考试信号与系统试题第一部分选择题(共 32 分)一、 单项选择题 (本大题共 16 小题,每小题2 分,共 32 分。在每小题的四个备选答案中,选出一个正确答案,并将正确答案的序号填在题干的括号内)t21 积分e()d等于()A (t )C1D2已知系统微分方程为y(t )52 t2esi n2(t44B (t)( t)(t )dy (t)2y( t)f (t), 若y(0 )1, f ( t)si n2t(t), 解 得 全 响 应 为dt45 ), t 0。全响应中2
15、45 )为()sin(2t4A 零输入响应分量B零状态响应分量C自由响应分量D稳态响应分量3 系统结构框图如图示,该系统的单位冲激响应h(t)满足的方程式为()dy( t)y( t)x( t)B h(t)x(t)y( t)A dtdh( t)h( t)( t)Dh(t)( t)y( t)Cdt4信号f1(t ), f2( t)波形如图所示,设f(t )f1(t ) * f2(t ),则f( 0)为()A 1B 2C3D 45已知信号f ( t)的傅里叶变换F( j )(A 1ej0tB1ej0t22C1ej0t(t )D1ej0t220),则f ( t)为()(t)6已知信号f ( t)如图所
16、示,则其傅里叶变换为()A2Sa( 4 )2Sa( 2 )B Sa(4 )2Sa( 2 );.CSa()Sa()242DSa()Sa()427信号f1(t )和f2( t)分别如图( a)和图 (b)所示,已知 f1( t)F1( j),则f2( t)的傅里叶变换为()A F ( j )ejt0B F ( j )ejt011CF ( j )ejt0D F ( j )ejt0118有一因果线性时不变系统,其频率响应H( j )1,对于某一输入x(t) 所得输出信号的傅里叶变j2换为Y ( j)1,则该输入 x(t) 为()2)( j( j3)A e3t( t)B e3t( t)Ce3t(t)De
17、3t(t )9f (t)e2 t(t)的拉氏变换及收敛域为()A 1, Re s21,Re s22Bss2C1, Re s2D 122, Re sss 210f (t )(t )(t1)的拉氏变换为()A 1(1 es)B1(1 es)ssCs(1es)Ds(1es)11F(s)s 2Res2的拉氏反变换为()s25s6A e3t2e2t (t )B eC(t)e3t( t)De3t3t2 t2e (t );.12图( a)中 ab 段电路是某复杂电路的一部分,其中电感L 和电容 C 都含有初始状态,请在图(b)中选出该电路的复频域模型。 ()13离散信号 f(n) 是指()A n 的取值是连
18、续的,而f(n) 的取值是任意的信号B n 的取值是离散的,而f(n) 的取值是任意的信号Cn 的取值是连续的,而f(n) 的取值是连续的信号D n 的取值是连续的,而f(n) 的取值是离散的信号14若序列 f(n) 的图形如图( a)所示,那么f(-n+1) 的图形为图( b)中的()15差分方程的齐次解为yh(n)c n(1)nc2(1)n,特解为yp(n)3(n),那么系统的稳态响应为1888()A yh( n)Byp( n)Cyh( n)yp(n)dyh(n)D dn16已知离散系统的单位序列响应h( n)和系统输入f ( n)如图所示, f(n) 作用于系统引起的零状态响应为yf(n
19、),那么yf(n)序列不为零的点数为()A3 个B4 个C5 个D6 个;.第二部分非选题(共68 分)二、填空题 ( 本大题共 9 小题,每小题2 分,共 18 分 )17e2 t(t ) * (t)=。18 GLC 并联电路发生谐振时,电容上电流的幅值是电流源幅值的倍。19在一个周期内绝对可积是周期信号频谱存在的条件。20已知一周期信号的幅度谱和相位谱分别如图(a)和图 (b)所示,则该周期信号f(t)=。21如果已知系统的单位冲激响应为h(t) ,则该系统函数H(s)为。22 H(s) 的零点和极点中仅决定了 h(t)的函数形式。23单位序列响应 h(n) 是指离散系统的激励为时,系统的
20、零状态响应。24我们将使F(z)f (n)zn收敛的 z 取值范围称为。n 025在变换域中解差分方程时,首先要对差分方程两端进行。三、计算题 ( 本大题共10小题,每小题5 分,共 50 分)2602 105rad / s, R10,电源电压Us500mV,谐振时的电容如图示串联电路的谐振频率电压有效值UcV求谐振时的电流有效值I ,并求元件参数L 和回路的品质因数Q。5 ,27已知信号 f(2-t) 的波形如图所示,绘出f(t) 的波形。28已知信号 x(t) 的傅里叶变换X(j) 如图所示,求信息x(t) 。29如图所示电路,已知us( t)1costV,求电路中消耗的平均功率P。;.t
21、0 t130求f (t )2t 1 t2的拉氏变换。0其它31已知电路如图示, t=0 以前开关位于 “1”,电路已进入稳态 ,t=0 时刻转至 “ 2”,用拉氏变换法求电流 i(t) 的全响应。32已知信号x(t) 如图所示,利用微分或积分特性,计算其傅里叶变换。33求F(z)4z2(| z| 1)的逆 Z 变换 f(n) ,并画出 f(n) 的图形( -4 n6)。z2134已知某线性时不变系统,f( t )为输入, y(t) 为输出,系统的单位冲激响应h( t)1et( t)。若输入信2号f (t )e2 t(t ),利用卷积积分求系统输出的零状态响应yf(t)。35用拉氏变换法求解以下
22、二阶系统的零输入响应yx(t)、零状态响应yf(t) 及全响应 y(t) 。d2y (t)dt2y (0 )3 dy( t)1y(t)5e3t( t)2dt2dy(t )01t 0dt2002 年上半年全国 信号与系统试题参考答案一、单项选择题1B2D3C4B5A6C7A8B9C10 A11D12 B13B14D15B16C二、填空题17e2(t)(t)18 Q19必要20f (t)2cos(1t)3cos(31t3)1cos(51t)32442421H (s)L h(t)22极点23(n)24收敛域25 Z 变换三、计算题26解:QUc5V100Us50mVUs50mV5mAI10R;.LQ
23、R100100.5 102H5mH0210527解:方法与由 f(t) 转换到 f(2-t) 相同,结果见下图。f (t)1t28解:利用变换的对称性101f (),即时域是门函数g (t ),频域是洒函数Sa(),F ( jt )22而频域是门函数g(t ),时域是洒函数Sa()。sin t2g2(),cos(0t)(0)(0),t则sintcos(0t )1 g () (0)(0)t22g(0) g (0)2由公式与 X(j)图对比,知0500,系数为2。X (t)2 sin tcos(500 )t29解:阻抗zRj L1jz1m1j11j1,212P0I02R 1 1 1WP1PP0P1
24、127W551I01V1,R1A21I1m1411(1 j )521 j21I12mR1(4)2(11) 12W22545U1 12VPU222WR130解:对f (t)分别求一阶、二阶导数f(t )(t)2 (t1)(t2)f(t )(t)2 (t1) (t2)1 2ese2s利用积分性质得f (t)的拉氏变换F ( s)11 2ese2 s1 es2st231 解:由图知电容上电压uc(0)uc(0 ) 10V,uc( )0Vi (0 ) 10 A,i ( )0A开关转换后的电路方程:uc(t )Ri(t)(t )可写成Cdi (t )Ri (t )(t )dt;.两边进行拉氏变换C sI
25、 (s) i (0)RI ( s) 1将 R=1 , C=1F 和i( 0 )10A代入sI (s) 10 I (s)1,即I (s)11s1所以i (t ) 11et(t ) A32解:由图知x(t)(t1)(t1)g(t )22sin( )x(t)g (t)G ( j )Sa(2)2G ( j)2X ( j )G(0) ()jG(0)=1X ( j )( )1Sa()j233解:F ( z)4zABz( z 1)( z 1)(z 1)( z 1)A2,B2F ( z)2zz1)( z1)(zf (n)21( 1)n (n)n-4-3-2-10f (n)00004图略34解:yf(t )h(
26、t )f (t )t1e1102te2( t)de2 tte2e d02035解:对原微分方程拉氏变换123456040404e2( t)d1e2 t et11 ete2t (t)22s2Y( s)sy(0)y(0 )3 sY( s)y(0)1Y(s)53312352ss2Y( s)sY(s)Y (s)ss232523sY (s)2s 3s23s1s23s122222s 3102s23s1(2s23s 1)(s 3)零输入响应:YX(s)2s32s3AB2s23s 1( s1)(s 1)( s1)(s1)2424;.A(s1)YX(s)s2121t1tyX(t) 8e210e48,B(s1)Y
27、X(s)104s14 (t )零状态响应:Yf(s)10CDE3s 1)( s 3)11 s 3(2s2ss24C(sE(syf(t)全响应:1)Yf(s)16,D1)Yf(s)1602(s11s14s1243)Yf(s)16311s1t1t16e3 t(t)16e2160e411111t1t16e3t (t )y(t )yX(t )yf(t ) 8e2(10160e41111全国 2004 年 7 月高等教育自学考试信号与系统试题作者:不祥来源:网友提供http:/2005 年 11 月 14 日一、单项选择题( 在每小题的四个备选答案中,选出一个正确答案,并将正确答案的序号填在题干的括号内
28、。每小题2分,共 20分 )1. RLC 串联谐振电路的谐振频率f0为 () 。A.1B.2C. 2D.1LC02LC2 . 已知系统的激励f(n)=n (n),单位序列响应h(n)= -(n2),则系统的零状态响应为() 。A. (n- 2) (n-2)B. n-(n2)C. (n- 2) (n)D. n (n)3.序列f ( n)(n)1( n3)的 Z 变换为 ()。11Z38A.B.11Z3C.11Z3D.11Z382284. 题 4图所示波形可表示为()。A. f(t)=(t)+ -1)+(t-(t2)-(t-3)B. f(t)=(t)+(t+1)+ -3(t+2)(t)C. f(t
29、)= (t)+-1)+(t-(t2)- 3(t-3)D. f(t)=2(t+1)+ -1)-(t (t-2)5. 描述某线性时不变系统的微分方程为y (t)+3y(t)=f(t)3, f(t)=3,(t)则12e3t(t )为系统的 () 。2A. 零输入响应B. 零状态响应C. 自由响应D. 强迫响应6. 已知某系统, 当输入f (t )e2t(t )时的零状态响应Yf(t )et(t ),则系统的冲激响应h(t) 的表达式为() 。A.(t )et(t )B.(t)et( t )C.(t)et(t)D.(t )et( t)7. 已知信号 f(t)如题 7图所示,则其傅里叶变换为()。A.
30、Sa( )+Sa(2 )B. 2Sa( )+4Sa(2 )C. Sa( )+2Sa(2 )D. 4Sa( )+2Sa(2 )8. 某系统的微分方程为y (t)+3y(t)=2f则系统(t)的阶跃响应g(t) 应为 () 。;.A.2e3t(t )B.1e3t(t )C.2e3t(t)D.1e3t(t )ej0t229.信号f (t )的傅里叶变换为(A ) 。A. 2 (- B. 2 ( 0) +C. ( - 0)D. ( 0+) 0)10. X(z)=1的逆变换为() 。(|z|a)ZaA.an(n)B.an1( n1)C.an 1(n)D.an(n1)二、填空题(每小题2分,共20 分)1
31、.f (t)2(t )3e7t的拉氏变换为。2.周期信号的频谱特点有:离散性、谐波性和。3. 已知 RLC串联谐振电路的品质因数Q=100, 谐振频率f0=1000kHz,则通频带BW为 10kHz 。4.线性性质包含两个内容:齐次性和。5. 积分=。6. 当 GCL并联电路谐振时, 其电感支路电流iL和电容支路电流iC的关系 ( 大小和相位)是大小相等 ,相位相反。7. 象函数 F(S)=的逆变换为。8.f (n)(n)(1)n(n)的Z变换为。9. 单位序列响应h(n)4 (n) 时,系统的是指离散系统的激励为为零状态响应。10.利用图示方法计算卷积积分的过程可以归纳为对折、平移、相乘和。
32、三、计算题(共 60分 )1. 已知信号f1(t )如题三 -1图所示,画出f2(t )f1( t1),2f3(t )(t)(t 1)及f (t )f1(t )f2(t)的波形图。(6分 )2. 周期电流信号i(t)=1+4cost+3sin(2t+30)+2cos(3t-120)+cos(4t)A ,(1)求该电流信号的有效值I 及 1 电阻上消耗的平均功率PT;(2)并画出电流信号的单边振幅频谱图。(6 分)3. 求题三 -3 图所示双口网络的Y 参数。已知YA=5+j3S, YB=3+j7S, YC=4+j5S 。(6分 )5 . 电路如题三-5 图所示,已知uc1(0 - )=3V,
33、uc2(0 - )=0,t=0 时,开关 K 闭合。试画出S 域模型,并求t0 时系统响应 i(t) 。 (8分 )6. 某离散系统如题三-6 图所示,写出该系统的差分方程,并求单位冲激响应h(n) 。 (8 分 ) Z 域和时域均验证。7. 表示某离散系统的差分方程为:y(n)+0.2y(n-1)-0.24y(n-2)=f(n)+f(n-1)(1) 求系统函数H(z) ;(2) 指出该系统函数的零点、极点;因为所以,其零点为 z=0 和 z=-1. 极点为z=0.4 和z=-0.6(3) 说明系统的稳定性;因为两个极点的模均在单位圆内, 所以此系统是稳定的.(4) 求单位样值响应h(n) 。
34、 (10 分 ) 根据部分分式展开8. 电路如题三-8 图所示,若以is(t )作为输入,电流iL(t )作为输出。(1) 列写电路的微分方程;(2) 求冲激响应 h(t);(3) 求阶跃响应g(t) 。 (10 分 )全国 2004 年 7 月高等教育自学考试信号与系统试题答案一、单项选择题1 D2 A3 A4C5B6C7 D8 A9 A10 A ;Y (s)1s21其中 6 题的解法Y( s)H ( s) F (s),而H (s)s111F (s)s 1s1ets2h(t)(t )(t)二、填空题( 每小题2分,共20 分)1.F (s)2312.收敛性3. 10kHz4.叠加性5.1et
35、0s76.相位相反7.f (t )sin tsin(t)8.F(Z)1(1)nZnn 049.输出为10.积分三、计算题(共 60分 )1解:f1(t )t,f2(t )f1( t1)见图a,则f2(t )t1.52:f (t)f1(t )f2(t )f1( ) f2(t) dtt( t )( t 1.5 )dt11 t0tt )( t1.5 )dt0 t10(1t33t2131 t 0f3(t )图形见图 b。3412,见图 c,而=1t33t20 t134f2(t)f3(t )1f (t )1(t )1t0t10132101Iac4b(t1)2.解:(1)I01A, I11mA22I2I2
36、m3A,I32A,I41A2222II02I12I22I32I421169414P=I2R=16 1=16W2222F ( j )4(2)单边振幅频谱图见右图33. 求题三 -3 图所示双口网络的Y 参数。201已知YA=5+j3S, YB=3+j7S, YC=4+j5S。(6 分 )012 34解:4.解:f (t )etF ( s)1,Yf(t )et2e3tYf(s)112s 1ss 3Y( s)123s12系统函数:H (s)s 1s31F (s)1s3s 32e3ts1冲激响应:h(t)(t).23( )1200123412005 . 电路如题三 -5图所示,已知uc1(0 - )=
37、3V , uc2(0 - )=0,t=0 时,开关 K 闭合。试画出S 域模型,并求t0 时系统响应i(t) 。 (8 分 )解:. 主要在于i(t) 的方向和电容初始电压相反.此题有点怪6.解:( 1)差分方程求初值;.y(n)f ( n)3y( n1)2 y( n2)由序列h( n)的定义,应满足h( n) 3h(n1)2h(n 2)(n)h(1)h(2)0上式可改写为h(n)3h(n 1) 2h(n2)(n)h(0)3h( 1)2h(2)( 0)1h(1)3h(0) 2h(1)(1)3(2)求h(n)当 n0 满足齐次方程h(n)3h( n 1)2h(n其特征方程232 0,特征为11,
38、h(n)c11nc22n代入初值,得h(0)c1c21h(1)c12c23,解出c11, c22h(n)( 1 2 2n) (n)(2n 11) (n)用 Z 域验证:Y( z)3z1Y( z)2z2Y ( z)2)022,故1Y ( z)1z2z21 3z12z2z23z 2(z 1)( z 2)Y( z)zAB,z( z 1)( z 2)z 1z 2A(z 1)Y( z)1,B( z 2)Y( z)2zz 1zz 2Y ( z)zz2zy(n)( 1 2 2n) (n)(2n 11) (n)z 127 解: (1) 求系统函数 H(z)Y( z)0.2z1Y( z) 0.24 z2Y (
39、z)F ( z)z1F ( z)H ( z)Y( z)1 z1z2zF ( z)1 0.2z10.24 z2z20.2z0.24(2)零点为z=0 和 z= -1 ,极点为z=0.4 和 z= -0.6(3) 因为两个极点的模均在单位圆内, 所以此系统是稳定的。(4) 求单位样值响应h(n)H ( z)z 1z1ABzz20.2z0.24( z0.4)( z 0.6)z0.4z0.6A( z0.4)H ( z)0.7B(z 0.6)H ( z)0.4zz 0.4zz0.6H ( z)0.7 z0.4 zh( n) 0.7(0.4)n0.4(0.6)n ( n)z0.4z0.68解:(1)列写电
40、路的微分方程:3diL(t )2iL(t)4is(t)dt(2) 求冲激响应 h(t)3sIL(s) 2IL(s)4IS( s)令diL 1(t)2(t)is(t)(t)3iL1dt;.12t冲激响应3sIL1( s)2IL 1(s) 1,则iL 1(t )e3(t),有IL 1(s)23s2t故h(t)iL(t )4iL1(t)4e3(t )(3) 求阶跃响应g(t)由阶跃响应与冲激响应的关系,得g(t )h(t)dt42t2te36e3(t)23全国 2005 年 4 月高等教育自学考试信号与系统试题课程代码: 02354一、单项选择题 (本大题共 12 小题,每小题2 分,共 24 分
41、)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。2.积分式( cos 3t ) ( t )dt等于 ()A.1B.0C.-1D.-23.已知信号 f(t) 如题 3(a)图所示,则 f(-2t-2)为题 3(b) 图中的 ()4.已知一线性时不变系统在题4(a)图所示信号的激励下的零状态响应如题4(b)图所示,则在如题4(c)图所示信号的激励下的零状态响应为题4(d)图中的 ()5.题 5 图中 f(t) 是周期为T 的周期信号, f(t) 的三角函数形式的傅里叶级数系数的特点是()A.仅有正弦项B.既有正弦项和余弦项,又有直流项C.
42、既有正弦项又有余弦项D.仅有余弦项1 |2)所对应的时间函数为 ()6.已知 F(j)=|,则 F(j0 |2;.A.sin tB.sin 2tttsin tsin 2tC.D.tt7.题 7 图所示信号f(t) 的傅里叶变换为 ()A.2Sa()sin2B.4Sa()sin2C.2Sa()cos2D.4Sa()cos28.f(t)=e-(t-2)( t 2)-e-(t-3)(t-3) 的拉氏变换 F(s)为 ()e2se3sB.0A.1se2se3se2se3sC.1D.1)(s1)s(s9.象函数 F(s)=1(Res2)的原函数为 ()3ss22B.(e2t-et) (t)A.(e-2t
43、-e-t) (t)C.(e-t-e-2t) (t)D.(et-e2t)(t)10.若系统冲激响应为h(t),下列式中可能是系统函数H(s) 的表达式为 ()estB.tA.3s11)2s2(sesTD.3e-2t(t-2)C.21)4s(s11.序列 f1(n)和 f2(n) 的波形如题 11 图所示,设 f(n)=f1(n)*f2(n),则 f(2)等于()A.0B.1C.3D.512.序列 f(n)=2-n(n-1) 的单边 Z 变换 F(z)等于 ()A.z112z1B.12zC.1z1D.12z2z二、填空题 ( 本大题共 12 小题,每小题2 分,共 24 分)13.RLC 并联谐振
44、电路在谐振时,其并联电路两端导纳Y0=_。14.矩形脉冲信号 (t)- (t-1) 经过一线性时不变系统的零状态响应为g(t)-g(t-1) ,则该系统的单位冲激响应 h(t) 为_。15.卷积式 e-2t(t)*(t)_ 。16.已知一线性时不变系统,当激励信号为f(t) 时,其完全响应为( 3sint-2cost ) (t) ;当激励信号为2f(t)时,其完全响应为 (5sint+cost) (t) ,则当激励信号为3f(t) 时,其完全响应为 _。17.一个周期矩形脉冲信号f(t) 的脉冲宽度为, =0.2 秒,其周期为T 秒; T=1 秒;则 f(t) 的傅里叶级数的幅度频谱的第一个过
45、零点的频率将在_谐波处。;.18.当把一个有限持续期的非周期信号f(t)进行周期化延拓成为fT(t) 后, fT(t) 的频谱与 f(t) 的频谱在连续性上的区别是 _19.某线性时不变系统的系统函数H(j2,则该系统的单位冲激响应h(t)为 _。)( j2)( j3)20.f(t)=t(t)的拉氏变换 F(s)为 _。21.在题 21 图所示电路中,若Us(t) 为输入信号,则零状态响应if(t) 的拉氏变换 If(s)的表示式为 _。22.题 22 图所示系统的系统函数为_。23. 在题 23 图所示系统中,输入序列为f(n) ,输出序列为y(n) ,各子系统的单位序列响应分别为h1(n)
46、=(n1),h2(n)(n1),则系统的单位序列响应h(n)=_ 。24.有限长序列 f(n) 的单边 Z 变换为 F(z)=1+z-1+6z-2+4z-3,若用单位序列表示该序列,则f(n)=_ 。三、计算题 ( 本大题共 10 小题,题 25题 32,每小题 5 分,题 33 题 34,每小题6 分,共 52 分)25.如题 25 图所示电路,已知电源电压有效值U=1mV ,求电路的固有谐振角频率0,谐振电路的品质因数Q,以及谐振时电容上电压的有效值Uco。26.已知一线性时不变系统的输入f(t) 与输出 y(t)的关系用下式表示t)1dy(t)=f ( teRC0RC其中 R、C 均为常
47、数,利用卷积积分法求激励信号为e-2t( t)时系统的零状态响应。27.已知如题 27(a)图所示的线性时不变系统,对于输入 f1(t)=(t)的零状态响应为y1(t)=(t)-(t-1) 。题 27(b)图所示系统由题27(a)图所示系统级联而成,求该系统在输入为f2(t)= (t)-(t-2)时的零状态响应y2(t)。;.28.已知信号 f(t) 如题 28 图所示,用时域微积分性质求出f(t) 的傅里叶变换F(j)。29.已知一个线性时不变系统的频响函数为H(j)( 其相位频谱下两个信号f1(t)=sinct( t)和f2(t)=的零状态响应是相同的。cct30.已知一线性时不变系统的系
48、统函数为H(s)=s21,求输入为 f(t)=e-t(t ),且y(0-)=0,y(0-)=1时系统的完全响应 y(t)。6s 8(t),系统的冲激响应h(t)=e-t31.已知某线性时不变系统的输入为 f(t)=sint(t) ,求系统的零状态响应yf(t)的象函数Yf(s)。32.如题 32 图所示线性时不变离散系统。(1)试写出系统函数H(z) ;(2)当输入序列 f(n)=(n)时,求系统的零状态响应 yf(n)。33.已知一线性时不变系统的冲激响应为h(t)=e-t(t)若激励信号为 f(t)=(t)-(t-2)+( t2),现要求系统在 t2 时的零状态响应为0,试确定的取值。34
49、.已知周期矩形脉冲电压信号f(t) 如题 34(a)图所示,当 f(t) 作用于如题 34(b)图所示 RL 电路时, y(t) 为输出电压信号。(1)把 f(t) 展成三角函数形式的傅里叶级数;(2)写出系统频响函数H(jk1)的表示式 ;(3) 写出 系 统 稳态 响应 Y(jk1)的 表示 式, 并求 出输 出 y(t) 的 一次 、 三 次谐 波时 间函数 表示式。全国 2005 年 4 月自考信号与系统试题答案一、单项选择1 A2.C3.A4.D 5.D 6.B 7.D8.A;.9.B10.B11.B12.其中第 6 题,设F ( jt )F (t )1, t240, t2F ( j
50、 )Sa(2),1由对称性F (t)2 f (),故f ()Sa()2用替换t,则得2f (t)1Sa(t)4 Sa(2t)sin 2t222t其中第 7 题:et1,e(t2)(t2)e2s,e(t3)(t 3)e3ss12se3ss 1s 1e(t 2)(t2)e( t 3)(t3)e二、填空题s113.Y01R14. h(t )h(t1)15.11e2t (t)216.(7 sin t4 cost ) (t)方法:y(t)yx(t)yf(t)(1)当激励为f (t )时,y(t )yx(t )yf(t )3 sin t2cost (t )(2)当激励为2 f (t)时,y(t )yx(t
51、)2yf(t ) 5 sin tcost(t )联立解出yx(t )和yf(t ),再带入y(t)yx(t)3yf(t) 7 sin t4cost (t )17.1018. 不连续19.h(t)2 e2te3 t (t)20.1S2CS21If(s)U (s)1RCS22.yf(t)yf(t)yf(t)f (t)23.y(n)h1(n)f (1) (n1)24.f (n)(n)h2(n)2 f (n)(n1)(n1)2 f (n)f ( 1) (n1)2 f ( n)(n1)6 (n2)4 (n3)三计算题25串联谐振电路,电源电压U=1mV,求固有电路谐振频率;谐振电路品质因数Q;谐振时电容
52、上电压UCO。解:ZRj ( L1),当电路谐振时,0L1C0C01101031106104弧度 /SLC0.01;.Q0L1041010310R10Uc0QUs10110mVf1(t)h1(t)y1(t)27有f1(t )(t )y1(t)(t )(t1)f2(t)h1(t )y0(t )y2(t )则h1(t )f2(t )(t)(t2)y0(t )(t)(t1)(t2)(t3)y2(t )(t)(t1) (t1)(t2) (t2)(t3)(t 3)(t4)(t)2 (t3)(t4)28. 对函数进行求二阶导数,得f(t )(t2)(t1)(t1)(t2)则f(t )ej 2ejejej
53、2f(t )1 ej 2ejejej 2jf (t)1)2 ej 2ejejej 222cos 2cos ( j29f1(t)(t )F1( j )ccf2(t )sinctF2( j)ctcF1( j)H ( j)F2( j)H ( j)yf( j)30. 已知H (s)s21,f (t)et(t ),y(0)0,y( 0)1求y(t)?6s8解:由原题知(s26s则冲激响应的原微分方程为激励响应的原微分方程为对应的拉斯变换为8) H (s)1,h(t)6(t)8 (t)( )hhty(t )6 y(t ) 8 y(t )f (t)sy(0 )y(0) 6 (s) 6y(0) 8()F( )
54、sYY ss11s21ABY (s)s 12s6s8)2)(s4))4)s 4s 1(s 1 (s(s 1 (sA(s4)Y (s)s1B(s1)Y(s)s14311113则Y( s)13 ss4故y(t)1(ete4 t)(t)3131.f (t )sin t(t)F (s)s211h(t)et(t )H ( s)s 1则有Yf(s)H (s)F ( s)1( s21)( s 1);s2Y (s)32.由图有Y(Z )6Z1Y(Z) 8Z2Y(Z) F(Z)Y (Z )(8Z26Z11)F(Z)H(Z)Y(Z)8Z211Z2Z28F(Z)6Z16Z又有f (n)(n)ZF(Z)1Z2ZY(Z
55、) H (Z)F(Z)Z6Z8Z1Z2Y(Z)Z2ABCZ(Z2)(Z 4)(Z1)Z 1Z 2Z4A (Z 1)Y(Z)Z 11B(Z2)Y(Z)Z 23Y(Z)1Z2Z8Z3 Z 123Z4Z所以y(n)11n2n 184n ( n)3333h(t)et(t ),f (t ) (t)(t2)(t值。.82C(Z4)Y(Z)Z 432),要求 t2 时,零状态响应为0 时的 解:H (s)1h(t )et(t)s11(t)s(t2)1e2 ss(t2)e2s在时域有y(t)h(t ) f (t ),则在复数域有Y (s)H ( s) F (s)(1s11es( s1)s( s1)11(1(s
56、s(s 1)s1e2 se2 s)1ss12se2 ss 11)e2se2s1)s 1yf(t )(t) et(t)(t2)e( t 2)(t2)e(t 2)(t 2)当 =-1 时, t2 时,零状态响应为0。34解:(1)f (t)的复里叶级数a0ak0bk211tdt01tdt12f (t) sin ksin ksin k1tdt11011cosk2(1)cosk 211 ( 2 2 cosk)k122k4,k1,3,5,k;.f (t)4 sin k1tk1,3,5,k1k(2)H ( jk1)Rjk1LR(3)Y( jk1)H ( jk1)F ( jk1)Rj(jk1)(jk1)k1
57、,3,5,jk1LRk 11j (jk1)(jk1)jkk 111(4)求一、三次谐波时间y(t )表达式H ( j1)10.303F1m4j12H ( j 31)10.1063F3m4j3132Y01m0.3843Y03m0.4442y(t)0.384 cos(1t270 )0.44 cos 21t90 )全国 2005 年 7 月高等教育自学考试信号与系统试题课程代码: 02354一、单选择题 (每小题,选出一个正确答案,填入括号内。每小题3 分,共 30 分)1.设:如图 1 所示信号 f(t) 。则: f(t) 的数学表示式为 (D)。A.f(t)=t (t)-(t-1) (t-1)B
58、.f(t)=(t-1) (t)-(1-t) (t-1)C.f(t)=t (t)-t (t-1)D.f(t)=(1-t) (t)-(t-1) (t-1)2. 设:两信号 f1(t) 和 f2(t) 如图 2。则: f1(t) 和 f2(t) 间的关系为 ()。A.f2(t)=f1(t-2) (t-2)B.f2(t)=f1(t+2) (t+2)C.f2(t)=f1(2-t) (2-t)D.f2(t)=f1(2-t) (t+2)ej t03.设:f(t),则 f(t) 为(D)。F(j )=jaA.f(t)=eB.f(t)=eC.f(t)=eD.f(t)=ea( tt0) (t)a (tt0)(t+
59、t0)a (t t0)(t-t0)a (tt0) (t)4. 设:一有限时间区间上的连续时间信号,其频谱分布的区间是(B)。A.有限,连续区间B.无穷,连续区间C.有限,离散区间D.无穷,离散区间5. 设:一 LC 串联谐振回路,电感有电阻R,电源US的内阻为RS,若电容C上并接一负载电阻RL。要使回路有载品质因素QL提高,应使 ()。A.Rs、RL、R 均加大B.Rs、 R 减小, RL加大C.Rs、RL、R均减小D.Rs、RL加大, R 减小6. 设:已知 g(t)G(j )=Sa()则: f(t)=g2(t-1)2F(j ) 为( C)。j-jA.F(j )=Sa()eB.F(j )=S
60、a( )e;.j-jC.F(j )=2Sa( )eD.F(j )=2Sa()e7. 某一离散因果稳定线性时不变系统的单位序列响应为h(n) ,请判断下列哪个为正确?()A.| h(n) |B.Limh(n)=a,a0nnC.|h(n)|0,则该系统函数 H(s)=_ 。13. 信号 f(n)= (n)+(1)n (n)的 Z 变换等于 _。214. 离散线性时不变系统的系统函数H(z) 的所有极点位于单位圆上,则对应的单位序列响应h(n) 为_信号。;.15. 信号 f(n)= (n)( (n)+ (n-2) 可_信号 (n)+(n-2) 。三、计算题 ( 每小题 5 分,共 55 分 )1.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 材料疲劳裂纹扩展控制重点基础知识点
- 材料疲劳寿命预测数据可视化重点基础知识点
- 行政管理实践案例试题及答案
- 店铺火灾疏散应急预案模板(3篇)
- 幼儿园火灾应急预案反思(3篇)
- 血液透析火灾应急预案(3篇)
- 档案火灾应急演练预案(3篇)
- 宿舍楼火灾应急预案体系(3篇)
- 高考数学成就探讨试题及答案
- 舱下火灾应急预案(3篇)
- 试管婴儿合格协议书
- 事业单位公开招聘分类考试公共科目笔试考试大纲(2025版)
- 汽车路试协议书
- 2023年甘肃省榆中县事业单位公开招聘笔试题带答案
- 2025全员安全培训考试试题及完整答案(考点梳理)
- 高考考务人员培训系统试题答案
- 2023年江苏省沭阳县事业单位公开招聘辅警33名笔试题带答案
- 聘请名誉顾问合同协议
- 移动营业厅合作合同协议
- 淘宝和商家合同协议
- 2025年河南高一学业水平合格考模拟地理试卷试题(含答案详解)
评论
0/150
提交评论