下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、探索规律 教学设计教学设计思路:通过生动有趣的活动,使学生积极参与,经历探索问题中的数量关系,并用符号表示规律,验证规律的过程,使学生感受其中蕴含的数学规律教学目的:知识与技能:1.会用代数式表示简单问题中的数量关系,能用合并同类项、去括号法则验证探索的规律过程与方法:2. 经历探索数量关系、运用符号表示规律、通过运算验证规律的过程,进一步发展符号感和抽象思维能力.情感态度价值观:3体现数学活动充满着探索性和创造性,感受共同合作取得成功的快乐.教学重点和难点:重点:会用代数式表示简单的问题中的数量关系.难点:探索数量关系,运用符号表示规律,通过运算验证规律.教学方法引导启发,充分体现学生为主体
2、,注重学生参与意识.课时安排1课时教学准备:多媒体教学平台教学过程:一、情景导入、提出问题:小明是一个善观察、爱动脑的孩子,一天他发现家中月历上,数与数之间有一些奇妙的关系,这引起了他极大的兴趣,于是他结合自己刚刚学过的数学知识,进行了认真分析和进一步的探索,结果小小月历表上竟然有意想不到的收获.你知道小明有什么发现吗?说说看.(电脑显示月历表)(友情提示、全班交流、教师点评:(1)都是连续的自然数.(2)每一行中的数比上一行对应的数多7)小明都做了哪些方面的探索?问题:下图是2002年1月的月历星期日星期一星期二星期三星期四星期五星期六1234567891011121314151617181
3、9202122232425262728293031在这个月历表中,十字框出5个数,问(1)日历图的套边方框中5个数之间有那些关系?这5个数的和与中间一个数有何关系?(2)这个关系对其他这样的十字框成立吗?你能用代数式表示这个关系吗?(3)这个关系对任何一个月的月历都成立吗?为什么?二、分析探索、问题解决:1.小组讨论、代表发言、学生点评:上、下两数的和=左、右两数的和=中间数的两倍五个数的和等于50,50=5×10,即是中间数的5倍.(教师框出另一个十字框,学生通过计算回答,并用字母表示完成下表) 结论:不论那个月的月历都有 2.独立思考,发现新知:在这个月历表中,正方形套边框出9个
4、数,问:(1)月历图的套边方框中的9个数之和于该方框正中间的数有什么关系?(2)这个关系对其他方框成立吗? 你能用代数式表示这个关系吗? (3)这个关系对任何一个月的日历都成立吗?为什么?(4)你还能发现这样的方框中9 个数之间的其他关系吗? (畅所欲言,学生点评,得出结论)(对于(4)可视学生情况,教师引导学生从不同角度进行观察和认识,如:上下、左右、对角、全体、局部等,学生自己得出结论:每列上下两数之和、每行左右两数之和、对角两数之和都等于中间这个数的两倍. 三、知识理顺、得出结论:探索规律,顾名思义就是根据题目的条件(包括有规律的算式、图表、图形等信息),从简情况或特殊情况入手,进行归纳
5、,大胆猜测探索,得出结论,再通过实例验证.归纳猜想(板书:特殊入手一般结论)四、应用反思、拓展创新:1上述月历表改成将自然数11001按如图的方式排列成一个长方形阵列,用一个正方形框出9个数,要使这个正方形框出的9个数之和分别等于(1)1998 (2)2008,这是否可能?若可能,求出框中最大数和最小数若不可能,说明理由.1234567891011121314151617181920212223242526272899599699799899910001001小组讨论,积极探索 ,教师及时点拨,最后得出如下结论:设框出9个数中的中间一个数为a,则9个数之和为9a,看1998、2008能否被9整
6、除,若可能,则还要看是否在边上. 因为2008不能被9整除,所以9个数之和不可能等于2008,而1998÷9=222,由于左边一列数被7除余1,右列数能被7整除,而222÷7=31余5故可以,最大数为222+8=230,最小数为222-8=114.2.在上述的长方形正中,若用正方形框出16个数,这16个数的和有和特殊关系呢?你能用代数式说明这个关系吗?框出16个数的和能否等于1998、2008、2080呢? (供学有余力的同学思考)五、随堂练习:1研究下列算式,你发现了什么规律?用字母表示这个规律:1×5+4=9=322×6+4=16=423×
7、7+4=25=524×8+4=36=62(学生讨论,找规律)答案:用n表示自然数,则算式中所表示的规律为:n(n+4)+4=(n+2)2.2将一张等腰三角形的纸片对折,使折出的两部分正好重合,按照这种方法继续对折下去:(1)连续对折两次;你能得到多少个三角形?3次呢?4次呢?(2)连续对折n次,你能得到多少个正方形?请说明理由.过程:让学生动手折叠,折一次为2个,对折两次为4个,即22个,对折三次为8个,即23.猜想:对折n次能得到2n个正方形.经验证:规律正确.结果:(1)连续对折两次,能得到4个三角形,连续对折三次,能得到8个三角形,连续对折四次,得到16个三角形.(2)连续对折
8、n次,得到2n个三角形,因为:对折次数得到的三角形个数12=2124=2238=23416=24n2n所以由表中数据即可得出规律:连续对折n次,得到2n个三角形.六、小结回顾、纳入体系: 1在文明和科学的发展过程中,人类创造了用符号代替语言、文字的方法,这是因为符号比语言、文字更简练、更直观、更具一般性2用字母表示数:(1)更普遍的说明数量关系,有利于发现规律;(2)用字母来表示特殊值是一种常用的解题技巧3今天研究的日历中的数学问题是比较简单的,如果问:一年后的今天是星期几?几月几日?又怎样找到规律七、布置作业:必做题:习题3.7.选做题:教材80页第1题.试一试:你能比较两个数20002001和20012000的大小吗?为了解决这个问题,我们先写出它的一般形式,即比较nn+1和(n+1)n的大小(n是自然数),然后我们分析n=1,n=2,n=3,这些简单情形,从中发现规律,经过归纳,猜想出结论.(1)通过计算,比较下列各组中两个数的大小(在空格中填写“”、“” 、“”)12_22 23_32 34_43
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论