




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第十课时课 题§1.6.3 整式的乘法(三)教学目标(一)教学知识点1.经历探索多项式与多项式相乘的运算法则的过程,会进行简单的多项式与多项式相乘运算(其中多项式相乘仅限于一次式相乘).2.理解多项式与多项式相乘运算的算理,体会乘法分配律的作用和转化的思想.(二)能力训练要求1.发展有条理的思考及语言表达能力.2.培养学生转化的数学思想.(三)情感与价值观要求在体会乘法分配律和转化思想的过程中,获得成就感,培养学习数学的兴趣和信心.教学重点多项式与多项式相乘的法则及应用.教学难点灵活地进行整式乘法的运算.教学方法活动探究法.教具准备下列形状的纸卡每一种若干张. 图118投影片两张第一
2、张:例题评析,记作(§1.6.3 A)第二张:练一练,记作(§1.6.3 B)教学过程.创设问题情景,引入新课师利用下面长方形卡片中的任意两个,拼成一个更大的长方形. 图119生用上面卡片中的任意两个拼出如下图形: 图120师你能用不同的形式表示上面四个图形的面积吗?生图A的面积可以表示为(n+a)m,也可以表示为nm+am;图B的面积可以表示为n(m+b),也可以表示为nm+nb;图C的面积可以表示为b(n+a),也可以表示为bn+ab;图D的面积可以表示为a(m+b),也可以表示为am+ab.生由上面的同一图形不同的面积表示方程可得:(n+a)m=nm+am;n(m+b
3、)=nm+nb;b(n+a)=bn+ab;a(m+b)=am+ab.师我们观察上面四个式子可以发现,等式的左边是单项式乘以多项式,而它们正是单项式与多项式相乘的一个几何解释.如果再把A、B、C、D四个图形进一步摆拼,会得到比它们更大的长方形.做一做,试一试,也许你会有更惊人的发现.通过拼更大的长方形,对比同一面积的不同表示方式,使学生对多项式与多项式的乘法有一个直观认识,再从代数角度去探索多项式与多项式乘法的运算法则.生利用A和C可以拼出下列长方形:生利用B和D也可以拼出如图121所示的长方形.图121师你能用不同的形式表示这个图形的面积吗?并进行比较.生上面的图形可以看成长为(m+b)、宽为
4、(n+a)的长方形,其面积是(m+b)(n+a);生上面的图形还可以看成图A和图C两个图形组成的,其面积是m(n+a)+b(n+a);生还可以看成是四个小长方形的组合,其面积是mn+ma+bn+ba.师比较后,你能发现什么?生这三种方法表示同一图形的面积.因此,它们是相等的,即(m+b)(n+a)=m(n+a)+b(n+a)=mn+ma+bn+ba.师如果从代数运算的角度解释上面的等式成立吗?生成立.在(m+b)(n+a)中,可以把其中的一个多项式看成一个整体,例如把(n+a)看成一个整体,利用乘法分配律,得,这时再利用单项式与多项式相乘的运算法则,就可得到.师这位同学从代数运算的角度解释这个
5、等式,解释的很清楚.我们接着来分析上面的等式.(m+b)(n+a)是多项式与多项式相乘,这正是我们要学习的整式乘法中的最后一个问题.而同学们能借用前面知识将问题转化成单项式与多项式的乘法,说明同学们已能恰当地利用转化的思想,解决当前问题.实际上,多项式与多项式相乘,可以把其中的一个多项式看成一个整体,再运用单项式与多项式相乘的方法进行运算.我们前面拼图,然后对同一面积用不同的形式表达所得出的等式可以作为多项式与多项式相乘的几何解释.结合上面的代数解释和几何解释,你能总结出多项式与多项式相乘的运算法则吗?生多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.师下面
6、我们就来看几个多项式与多项式相乘的整式乘法运算.出示投影片(§1.6.3 A)例1计算:(1)(1x)(0.6x);(2)(2x+y)(xy);(3)(xy)2;(4)(2x+3)2;(5)(x+2)(y+3)(x+1)(y2).分析:在做的过程中,要明白每一步算理.因此,不要求直接利用法则进行运算,而要利用乘法分配律将多项式与多项式相乘转化为单项式与多项式相乘.解:(1)(1x)(0.6x)=(0.6x)x(0.6x)=0.6x0.6x+x2=0.61.6x+x2或(1x)(0.6x)=1×0.61×x0.6x+x·x=0.6x0.6x+x2=0.61
7、.6x+x2(2)(2x+y)(xy)=2x(xy)+y(xy)=2x22xy+xyy2=2x2xyy2或(2x+y)(xy)=2x·x2x·y+xyy2=2x2xyy2(3)(xy)2=(xy)(xy)=x(xy)y(xy)=x2xyxy+y2=x22xy+y2或(xy)2=(xy)(xy)=x·xx·yx·y+y·y=x22xy+y2(4)(2x+3)2=(2x+3)(2x+3)=2x(2x+3)+3(2x+3)=4x26x6x+9=4x212x+9或(2x+3)2=(2x+3)(2x+3)=(2x)(2x)+3(2x)+3(2x
8、)+9=4x212x+9(5)(x+2)(y+3)(x+1)(y2)=(xy+3x+2y+6)(xy2x+y2)=xy+3x+2y+6xy+2xy+2=5x+y+8评注:(3)(4)题利用乘方运算的意义化成多项式与多项式的乘法运算.(5)整式的混合运算,一定要注意运算顺序.练一练出示投影片(§1.6.3 B)1.计算:(1)(m+2n)(m2n);(2)(2n+5)(n3);(3)(x+2y)2;(4)(ax+b)(cx+d).2.试一试,计算:(a+b+c)(c+d+e)解:1.(1)(m+2n)(m2n)=m·mm·2n+2n·m2n·2n
9、=m22mn+2mn4n2=m24n2(2)(2n+5)(n3)=2n·n3·2n+5n5×3=2n26n+5n15=2n2n15(3)(x+2y)2=(x+2y)(x+2y)=x2+2xy+2xy+4y2=x2+4xy+4y2(4)(ax+b)(cx+d)=ax·cx+ax·d+b·cx+bd=acx2+adx+bcx+bd2.(a+b+c)(c+d+e)=a(c+d+e)+b(c+d+e)+c(c+d+e)=ac+ad+ae+bc+bd+be+c2+cd+ce.课时小结这节课我们通过拼图游戏,可以直观地认识多项式与多项式的乘法,然
10、后又从代数运算的角度将多项式与多项式相乘转化为单项式与多项式相乘,从而归纳出多项式与多项式相乘的法则.重点是明白每一步的算理,熟练多项式与多项式乘法的运算法则.课后作业1.课本P28,习题1.10第1、2题.2.归纳总结整式的乘法运算,并写出体会、经验在全班交流.活动与探究由计算得到27×23=621,发现积的末两位上的数21=7×3,前面的数6=2×(2+1).换两个数84×86=7224同样具有这一特点,于是我们猜想:十位数字相同,个位数字之和为10的两位数的积是否也有这样的规律?过程根据题意,可以发现这样的两位数除了十位数字相同外,个位数字是补数,
11、即个位数字的和是10.因此,我们设这样的两位数分别为10a+b和10a+c(a,b,c都是正整数,并且b+c=10).根据多项式与多项式的乘法,通过对结果变形,就可说明.结果设这样的两位数分别为10a+b和10a+c(a、b、c都是正整数,并且b+c=10).根据多项式与多项式相乘的运算法则可知,这两个数的乘积为(10a+b)(10a+c)=100a2+10a(b+c)+bc=100a2+100a+bc=100a(a+1)+bc这个式子告诉我们:求十位数相同,个位数字之和等于10的两个两位数的积,可以用十位上的数a去乘比它大1的数(a+1),然后在乘积的后面添上两位数,在这两个数位上写上个位数
12、字的乘积,所得的结果就是原来这两位数的乘积.例如:计算:(1)32×38 (2)54×56(3)73×77解:(1)3×(3+1)=12,2×8=1632×38=1216(2)5×(5+1)=30,4×6=2454×56=3024(3)7×(7+1)=56,3×7=2173×77=5621板书设计§1.6.3 整式的乘法多项式与多项式相乘一、拼图游戏1.做一做,利用手中准备好的卡片拼出更长的长方形.2.用不同形式表示图122的面积.图122(m+b)(n+a)=m(
13、n+a)+b(n+a)=mn+ma+bn+ba (1)3.用乘法分配律说明(1)式成立.(把(n+a)当成整体,利用乘法分配律而推出)=mn+ma+bn+ba(利用单项式与多项式运算法则)4.多项式与多项式相乘的运算法则5.例1(略).6.练习(略).备课资料一、参考练习1.选择题(1)计算m2(m+1)(m5)的结果正确的是( )A.4m5B.4m+5C.m24m+5D.m2+4m5(2)(1+x)(2x2+ax+1)的结果中x2项的系数为2,则a的值为( )A.2B.1C.4D.以上都不对(3)下列等式成立的是( )A.(a+2b)2=a2+4b2B.(2x3y)2=4x29y2C.(m+
14、)2=+m+m2D.(a2b)2=a22ab+4b2(4)三个连续奇数,若中间一个为n,则它们的积为( )A.6n36nB.4n3nC.n34nD.n3n(5)下列等式( )x(xy)y(3y2x)=x23xy3y2ab2(b3ab2+2a3b)=ab5+a2b4a4b3(ab)(a+b)=a2ab+b2(2x+y)(4x2+2xy+y2)=8x3+y3中,正确的是( )A.0个B.1个C.2个D.3个2.计算:(1)5(x1)(x+3)2(x5)(x2)(2)(3x2y)(2x3y)(3)(ab)(a2+ab+b2)(4)(3y+2)(y4)3(y2)(y3)3.先化简,再求值(xy)(x2y) (2x3y)(x+2y),其中x=2,y=.4.规律探索题(1)研究下列等式:1×3+1=4=22;2×4+1=9=32;3×5+1=16=42;4×6+1=25=52你发现有什么规律?根据你的发现,找出表示第n个等式的公式并证明.(2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025家具购买合同范本
- 结肠脂肪瘤的临床护理
- 2025家电购买合同样本
- 2025年国家电网招聘之电工类通关考试题库带答案解析
- 2025年度出版物销售合同协议
- 初中历史明朝的灭亡和清朝的建立 课件 +2024-2025学年统编版七年级历史下册
- 镰刀型细胞贫血病的临床护理
- 书写痉挛的临床护理
- 小儿胆道蛔虫症的临床护理
- 第三型腹膜炎的临床护理
- 2025年高考历史总复习高中历史必修二八大专题知识复习提纲
- 2025事业单位考试题库及答案200题
- 临床执业医师考试健康教育技能试题及答案
- 机车车辆试题及答案
- 地理澳大利亚课件-2024-2025学年人教版(2024)初中地理七年级下册
- 常用施工规定和技术要求1
- 旅游景区娱乐服务设计
- 亚马逊店铺转让合同标准文本
- T-CQAP 4002-2024 医疗安全(不良)事件根本原因分析法活动指南
- 利用科学史进行高中生物学主线式情境教学的实践研究
- 2025年高考作文备考:十大热点人物事迹+高分素材
评论
0/150
提交评论