




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、解三角形专题练习1、在b、c,向量,且。(I)求锐角B的大小; (II)如果,求的面积的最大值。2、在ABC中,角A,B,C的对边分别为a,b,c,且(I)求cosB的值; (II)若,且,求b的值.3、在中,.()求角; ()设,求的面积.4、 在ABC中,A、B、C所对边的长分别为a、b、c,已知向量, (I)求A的大小;(II)求的值.5、 ABC中,a,b,c分别是角A,B,C的对边,且有sin2C+cos(A+B)=0,.当,求ABC的面积。6、在ABC中,角A、B、C所对边分别为a,b,c,已知,且最长边的边长为l.求:(I)角C的大小; (II)ABC最短边的长.7、在ABC中,
2、a、b、c分别是角A、B、C的对边,且.(I)求角B的大小; (II)若,求ABC的面积. 8、(2009全国卷文)设ABC的内角A、B、C的对边长分别为a、b、c,,,求B. 9、(2009天津卷文)在中,()求AB的值。 ()求的值。1、 (1)解:mn 2sinB(2cos21)cos2B2sinBcosBcos2B tan2B4分02B,2B,锐角B2分(2)由tan2B B或当B时,已知b2,由余弦定理,得:4a2c2ac2acacac(当且仅当ac2时等号成立)3分ABC的面积SABC acsinBacABC的面积最大值为1分当B时,已知b2,由余弦定理,得:4a2c2ac2aca
3、c(2)ac(当且仅当ac时等号成立)ac4(2)1分ABC的面积SABC acsinBac2ABC的面积最大值为21分2、解:(I)由正弦定理得,因此6分 (II)解:由,所以ac3、()解:由,得,所以 3分因为6分且 故 7分()解:根据正弦定理得, . 10分所以的面积为4、解:(1)由m/n得2分即 4分舍去 6分 (2)由正弦定理,8分 10分5、解:由有6分由,8分由余弦定理当6、解:(I)tanCtan(AB)tan(AB) , 5分(II)0tanBtanA,A、B均为锐角, 则BA,又C为钝角,最短边为b,最长边长为c7分由,解得9分由,12分7、解:(I)解法一:由正弦定理得 将上式代入已知 即 即 B为三角形的内角,. 解法二:由余弦定理得 将上式代入 整理得 B为三角形内角, (II)将代入余弦定理得 , . 8、解析:本题考查三角函数化简及解三角形的能力,关键是注意角的范围对角的三角函数值的制约,并利用正弦定理得到sinB=(负值舍掉),从而求出B=。解:由 cos(AC)+cosB=及B=(A+C)得 cos(AC)cos(A+C)=, cosAcosC+sinAsinC(cosAcosCsinAsinC)=, sinAsinC=.又由=ac及正弦定理得 故 , 或 (舍去),于是 B= 或
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 时机与技术选择在软件开发中的重要性试题及答案
- 进程与线程管理测试题及答案
- 品牌影响力提升的创意方式计划
- 江西省宜春市2025届七年级数学第二学期期末联考模拟试题含解析
- 风险管理与决策制定研究试题及答案
- 年度数字营销策略的制定计划
- 关注学生多元智能发展的教学活动计划
- 组织班级心理健康专题讲座计划
- 2024年陕西省统计局下属事业单位真题
- 有效设置前台文员的工作优先级计划
- 2025年中考语文备考之课内文言文主题阅读训练主题三:托物言志篇(原卷版)
- 人教版(2024)七年级下册英语UNIT 7 A Day to Remember 综合素质评价测试卷(含答案)
- 壶口瀑布摄影指南课件
- 现场心肺复苏演讲修改版课件
- 全国职业院校技能大赛高职组(商务数据分析赛项)备赛试题库(含答案)
- 高一上册物理压轴题考卷01(解析版)-2024-2025学年高中物理《压轴挑战》培优专题训练(人教版2019必修第一册)
- Qt 5 开发及实例(第5版) 课件 第7章 Qt 5绘图及实例
- 《中华人民共和国职业分类大典》(2022年版)各行业职业表格统计版(含数字职业)
- 《药学综合知识与技能》课件-过敏性鼻炎的自我药疗与用药指导
- 《健康评估技术》课件-糖尿病评估
- 安全负责人岗位竞聘
评论
0/150
提交评论