小菜鸟数学压轴题30道_第1页
小菜鸟数学压轴题30道_第2页
小菜鸟数学压轴题30道_第3页
小菜鸟数学压轴题30道_第4页
小菜鸟数学压轴题30道_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、小菜鸟数学压轴题30道1如图,O是RtABC的外接圆,AB为直径,ABC=30°,CDOC于C,EDAB于F,(1)判断DCE的形状;(2)设O的半径为1,且OF=,求证:DCEOCB2如图1,抛物线 y=x2x+6与x轴交于A、B两点(点A在B 的左侧),交y轴交于点C,点D是线段AC的中点,直线BD与抛物线 y=x2x+6交于另一点E,交y轴交于点F(1)求直线BE的解析式;(2)如图2,点P是直线BE上方抛物线上一动点,连接PD、PF,当PDF的面积最大时,在线段BE上找一点G(不与E、B重合),使得PGGE的值最小,求出点G的坐标及PGGE的最小值;(3)如图3,将OBF绕点

2、B顺时针旋转度(0°180°),记旋转过程中的OBF为O1BF1,直线O1F1与x轴交于点M,与直线BE交于点N在OBF旋转过程中,是否存在一个合适的位置,使得MNB是一个等腰三角形?若存在,请直接写出所有符合条件的点N的坐标;若不存在,请说明理由3中点、平行线、等腰直角三角形、等边三角形都是常见的几何图形!(1)如图1,若点D为等腰直角三角形ABC斜边BC的中点,点E、F分别在AB、AC边上,且EDF=90°,连接AD、EF,当BC=5,FC=2时,求EF的长度;(2)如图2,若点D为等边三角形ABC边BC的中点,点E、F分别在AB、AC边上,且EDF=90&#

3、176;;M为EF的中点,连接CM,当DFAB时,证明:3ED=2MC;(3)如图3,若点D为等边三角形ABC边BC的中点,点E、F分别在AB、AC边上,且EDF=90°;当BE=6,CF=0.8时,直接写出EF的长度4已知如图1,抛物线y=x2x+3与x轴交于A和B两点(点A在点B的左侧),与y轴相交于点C,点D的坐标是(0,1),连接BC、AC(1)求出直线AD的解析式;(2)如图2,若在直线AC上方的抛物线上有一点F,当ADF的面积最大时,有一线段MN=(点M在点N的左侧)在直线BD上移动,首尾顺次连接点A、M、N、F构成四边形AMNF,请求出四边形AMNF的周长最小时点N的横

4、坐标;(3)如图3,将DBC绕点D逆时针旋转°(0°180°),记旋转中的DBC为DBC,若直线BC与直线AC交于点P,直线BC与直线DC交于点Q,当CPQ是等腰三角形时,求CP的值5在直角坐标系中,我们不妨将横坐标,纵坐标均为整数的点称之为“中国结”(1)求函数y=x+2的图象上所有“中国结”的坐标;(2)若函数y=(k0,k为常数)的图象上有且只有两个“中国结”,试求出常数k的值与相应“中国结”的坐标;(3)若二次函数y=(k23k+2)x2+(2k24k+1)x+k2k(k为常数)的图象与x轴相交得到两个不同的“中国结”,试问该函数的图象与x轴所围成的平面图

5、形中(含边界),一共包含有多少个“中国结”?6如图1,在平面直角坐标系xOy中,直线l:与x轴、y轴分别交于点A和点B(0,1),抛物线经过点B,且与直线l的另一个交点为C(4,n)(1)求n的值和抛物线的解析式;(2)点D在抛物线上,且点D的横坐标为t(0t4)DEy轴交直线l于点E,点F在直线l上,且四边形DFEG为矩形(如图2)若矩形DFEG的周长为p,求p与t的函数关系式以及p的最大值;(3)M是平面内一点,将AOB绕点M沿逆时针方向旋转90°后,得到A1O1B1,点A、O、B的对应点分别是点A1、O1、B1若A1O1B1的两个顶点恰好落在抛物线上,请直接写出点A1的横坐标7

6、如图,在平面直角坐标系xOy中,抛物线y=ax22ax3a(a0)与x轴交于A,B两点(点A在点B的左侧),经过点A的直线l:y=kx+b与y轴交于点C,与抛物线的另一个交点为D,且CD=4AC(1)直接写出点A的坐标,并求直线l的函数表达式(其中k,b用含a的式子表示);(2)点E是直线l上方的抛物线上的一点,若ACE的面积的最大值为,求a的值;(3)设P是抛物线对称轴上的一点,点Q在抛物线上,以点A,D,P,Q为顶点的四边形能否成为矩形?若能,求出点P的坐标;若不能,请说明理由8如图,抛物线y=ax2+c(a0)与y轴交于点A,与x轴交于B,C两点(点C在x轴正半轴上),ABC为等腰直角三

7、角形,且面积为4,现将抛物线沿BA方向平移,平移后的抛物线过点C时,与x轴的另一点为E,其顶点为F,对称轴与x轴的交点为H(1)求a、c的值(2)连接OF,试判断OEF是否为等腰三角形,并说明理由(3)现将一足够大的三角板的直角顶点Q放在射线AF或射线HF上,一直角边始终过点E,另一直角边与y轴相交于点P,是否存在这样的点Q,使以点P、Q、E为顶点的三角形与POE全等?若存在,求出点Q的坐标;若不存在,请说明理由9概念理解把一个或几个图形分割后,不重叠、无缝隙的重新拼成另一个图形的过程叫做“剖分重拼”如图1,一个梯形可以剖分重拼为一个三角形;如图2,任意两个正方形可以剖分重拼为一个正方形尝试操

8、作如图3,把三角形剖分重拼为一个矩形(只要画出示意图,不需说明操作步骤)阅读解释如何把一个矩形ABCD(如图4)剖分重拼为一个正方形呢?操作如下:画辅助图作射线OX,在射线OX上截取OM=AB,MN=BC以ON为直径作半圆,过点M作MI射线OX,与半圆交于点I;图4中,在CD上取点F,使AF=MI,作BEAF,垂足为E把ADF沿射线DC平移到BCH的位置,把AEB沿射线AF平移到FGH的位置,得四边形EBHG请说明按照上述操作方法得到的四边形EBHG是正方形拓展延伸任意一个多边形是否可以通过若干次的剖分重拼成一个正方形?如果可以,请简述操作步骤;如果不可以,请说明理由10在数学兴趣小组活动中,

9、小明进行数学探究活动,将边长为2的正方形ABCD与边长为2的正方形AEFG按图1位置放置,AD与AE在同一直线上,AB与AG在同一直线上(1)小明发现DGBE,请你帮他说明理由(2)如图2,小明将正方形ABCD绕点A逆时针旋转,当点B恰好落在线段DG上时,请你帮他求出此时BE的长(3)如图3,小明将正方形ABCD绕点A继续逆时针旋转,线段DG与线段BE将相交,交点为H,写出GHE与BHD面积之和的最大值,并简要说明理由11在RtACB和RtAEF中,ACB=AEF=90°,若点P是BF的中点,连接PC,PE特殊发现:如图1,若点E,F分别落在边AB,AC上,则结论:PC=PE成立(不

10、要求证明)问题探究:把图1中的AEF绕着点A顺时针旋转(1)如图2,若点E落在边CA的延长线上,则上述结论是否成立?若成立,请给予证明;若不成立,请说明理由;(2)如图3,若点F落在边AB上,则上述结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由;(3)记=k,当k为何值时,CPE总是等边三角形?(请直接写出k的值,不必说明理由)12如图,在RtABC中,C=90°,AC=4cm,BC=5cm,D是BC边上一点,CD=3cm,点P为边AC上一动点(点P与A、C不重合),过点P作PEBC,交AD于点E点P以1cm/s的速度从A到C匀速运动(1)设点P的运动时间为t(s),DE

11、的长为y(cm),求y关于t的函数关系式,并写出t的取值范围;(2)当t为何值时,以PE为半径的E与以DB为半径的D外切?并求此时DPE的正切值;(3)将ABD沿直线AD翻折,得到ABD,连接BC如果ACE=BCB,求t的值13如图,在直角梯形ABCD中,ABCD,ADAB,B=60°,AB=10,BC=4,点P沿线段AB从点A向点B运动,设AP=x(1)求AD的长;(2)点P在运动过程中,是否存在以A、P、D为顶点的三角形与以P、C、B为顶点的三角形相似?若存在,求出x的值;若不存在,请说明理由;(3)设ADP与PCB的外接圆的面积分别为S1、S2,若S=S1+S2,求S的最小值1

12、4如图,在直角梯形OABC中,OABC,A、B两点的坐标分别为A(13,0),B(11,12)动点P、Q分别从O、B两点出发,点P以每秒2个单位的速度沿x轴向终点A运动,点Q以每秒1个单位的速度沿BC方向运动;当点P停止运动时,点Q也同时停止运动线段PQ和OB相交于点D,过点D作DEx轴,交AB于点E,射线QE交x轴于点F设动点P、Q运动时间为t(单位:秒)(1)当t为何值时,四边形PABQ是平行四边形(2)PQF的面积是否发生变化?若变化,请求出PQF的面积s关于时间t的函数关系式;若不变,请求出PQF的面积(3)随着P、Q两点的运动,PQF的形状也随之发生了变化,试问何时会出现等腰PQF?

13、15如图,在RtACB中,ACB=90°,AC=3,BC=6,D为BC上一点,CD=2,射线DG,BC交AB于点G点P从点A出发以每秒个单位长度的速度沿AB方向运动,点Q从点D出发以每秒2个单位长度的速度沿射线DG运动,P、Q两点同时出发,当点P到达点B时停止运动,点Q也随之停止,过点P作PEAC于点E,PFBC于点F,得到矩形PECF,点M为点D关于点Q的对称点,以QM为直角边,在射线DG的右侧作RtQMN,使QN=2QM设运动时间为t(单位:秒)(1)当点N恰好落在PF上时,求t的值(2)当QMN和矩形PECF有重叠部分时,直接写出重叠部分图形面积S与t的函数关系式以及自变量t的

14、取值范围(3)连接PN、ND、PD,是否存在这样的t值,使PND为直角三角形?若存在,求出相应的t值若不存在,请说明理由16如图,ABC中,AB=AC=10厘米,BC=12厘米,D是BC的中点,点P从B出发,以a厘米/秒(a0)的速度沿BA匀速向点A运动,点Q同时以1厘米/秒的速度从D出发,沿DB匀速向点B运动,其中一个动点到达终点时,另一个动点也随之停止运动,设它们的运动时间为t秒(1)若a=2,那么t为何值时BPQ与BDA相似?(2)已知M为AC上一点,若当t=时,四边形PQCM是平行四边形,求这时点P的运动速度(3)在P、Q两点运动工程中,要使线段PQ在某一时刻平分ABD的面积,点P的运

15、动速度应限制在什么范围内?【提示:对于一元二次方程,有如下的结论:若x1x2是方程ax2+bx+c=0(a0)的两个根,则x1+x2=,x1x2=】17如图所示,A、B两城市相距200km现计划在这两座城市间修筑一条高速公路(即线段AB),经测量,森林保护中心P在A城市的北偏东30°和B城市的北偏西45°的方向上,已知森林保护区的范围在以P点为圆心,100km为半径的圆形区域内,请问:计划修筑的这条高速公路会不会穿越保护区为什么?(参考数据:1.732,1.414)18AB,CD是O的两条弦,直线AB,CD互相垂直,垂足为点E,连接AD,过点B作BFAD,垂足为点F,直线B

16、F交直线CD于点G(1)如图1,当点E在O外时,连接BC,求证:BE平分GBC;(2)如图2,当点E在O内时,连接AC,AG,求证:AC=AG;(3)如图3,在(2)条件下,连接BO并延长交AD于点H,若BH平分ABF,AG=4,tanD=,求线段AH的长19如图1,直线lAB于点B,点C在AB上,且AC:CB=2:1,点M是直线l上的动点,作点B关于直线CM的对称点B,直线AB与直线CM相交于点P,连接PB(1)如图2,若点P与点M重合,则PAB=,线段PA与PB的比值为(2)如图3,若点P与点M不重合,设过P,B,C三点的圆与直线AP相交于D,连接CD,求证:CD=CB;PA=2PB;(3

17、)如图4,若AC=2,BC=1,则满足条件PA=2PB的点都在一个确定的圆上,在以下小题中选做一题:如果你能发现这个确定的圆的圆心和半径,那么不必写出发现过程,只要证明这个圆上的任意一点Q,都满足QA=2QB;如果你不能发现这个确定的圆的圆心和半径,那么请取出几个特殊位置的P点,如点P在直线AB上,点P与点M重合等进行探究,求这个圆的半径20问题探究:(一)新知学习:圆内接四边形的判断定理:如果四边形对角互补,那么这个四边形内接于圆(即如果四边形EFGH的对角互补,那么四边形EFGH的四个顶点E、F、G、H都在同个圆上)(二)问题解决:已知O的半径为2,AB,CD是O的直径P是上任意一点,过点

18、P分别作AB,CD的垂线,垂足分别为N,M(1)若直径ABCD,对于上任意一点P(不与B、C重合)(如图一),证明四边形PMON内接于圆,并求此圆直径的长;(2)若直径ABCD,在点P(不与B、C重合)从B运动到C的过程中,证明MN的长为定值,并求其定值;(3)若直径AB与CD相交成120°角当点P运动到的中点P1时(如图二),求MN的长;当点P(不与B、C重合)从B运动到C的过程中(如图三),证明MN的长为定值(4)试问当直径AB与CD相交成多少度角时,MN的长取最大值,并写出其最大值21已知如图平面直角坐标系中,点O是坐标原点,矩形ABCO是顶点坐标分别为A(3,0)、B(3,4

19、)、C(0,4)点D在y轴上,且点D的坐标为(0,5),点P是直线AC上的一动点(1)当点P运动到线段AC的中点时,求直线DP的解析式(关系式);(2)当点P沿直线AC移动时,过点D、P的直线与x轴交于点M问在x轴的正半轴上是否存在使DOM与ABC相似的点M?若存在,请求出点M的坐标;若不存在,请说明理由;(3)当点P沿直线AC移动时,以点P为圆心、R(R0)为半径长画圆得到的圆称为动圆P若设动圆P的半径长为,过点D作动圆P的两条切线与动圆P分别相切于点E、F请探求在动圆P中是否存在面积最小的四边形DEPF?若存在,请求出最小面积S的值;若不存在,请说明理由22如图1,在平面直角坐标系中,正方

20、形OABC的顶点A(6,0),过点E(2,0)作EFAB,交BO于F;(1)求EF的长;(2)过点F作直线l分别与直线AO、直线BC交于点H、G;根据上述语句,在图1上画出图形,并证明=;过点G作直线GDAB,交x轴于点D,以圆O为圆心,OH长为半径在x轴上方作半圆(包括直径两端点),使它与GD有公共点P如图2所示,当直线l绕点F旋转时,点P也随之运动,证明:=,并通过操作、观察,直接写出BG长度的取值范围(不必说理);(3)在(2)中,若点M(2,),探索2PO+PM的最小值23在矩形ABCD中,点F在AD延长线上,且DF=DC,M为AB边上一点,N为MD的中点,点E在直线CF上(点E、C不

21、重合)(1)如图1,若AB=BC,点M、A重合,E为CF的中点,试探究BN与NE的位置关系及的值,并证明你的结论;(2)如图2,且若AB=BC,点M、A不重合,BN=NE,你在(1)中得到的两个结论是否成立?若成立,加以证明;若不成立,请说明理由;(3)如图3,若点M、A不重合,BN=NE,你在(1)中得到的结论两个是否成立,请直接写出你的结论24某数学兴趣小组对线段上的动点问题进行探究,已知AB=8问题思考:如图1,点P为线段AB上的一个动点,分别以AP、BP为边在同侧作正方形APDC、BPEF(1)当点P运动时,这两个正方形的面积之和是定值吗?若是,请求出;若不是,请求出这两个正方形面积之

22、和的最小值(2)分别连接AD、DF、AF,AF交DP于点K,当点P运动时,在APK、ADK、DFK中,是否存在两个面积始终相等的三角形?请说明理由问题拓展:(3)如图2,以AB为边作正方形ABCD,动点P、Q在正方形ABCD的边上运动,且PQ=8若点P从点A出发,沿ABCD的线路,向点D运动,求点P从A到D的运动过程中,PQ的中点O所经过的路径的长(4)如图3,在“问题思考”中,若点M、N是线段AB上的两点,且AM=BN=1,点G、H分别是边CD、EF的中点,请直接写出点P从M到N的运动过程中,GH的中点O所经过的路径的长及OM+OB的最小值25如图,在ABCD中,AB=13,BC=50,BC

23、边上的高为12点P从点B出发,沿BADA运动,沿BA运动时的速度为每秒13个单位长度,沿ADA运动时的速度为每秒8个单位长度点Q从点B出发沿BC方向运动,速度为每秒5个单位长度P、Q两点同时出发,当点Q到达点C时,P、Q两点同时停止运动设点P的运动时间为t(秒)连结PQ(1)当点P沿ADA运动时,求AP的长(用含t的代数式表示)(2)连结AQ,在点P沿BAD运动过程中,当点P与点B、点A不重合时,记APQ的面积为S求S与t之间的函数关系式(3)过点Q作QRAB,交AD于点R,连结BR,如图在点P沿BADA运动过程中,当线段PQ扫过的图形(阴影部分)被线段BR分成面积相等的两部分时t的值(4)设

24、点C、D关于直线PQ的对称点分别为C、D,直接写出CDBC时t的值26小明在一次数学兴趣小组活动中,对一个数学问题作如下探究:问题情境:如图1,四边形ABCD中,ADBC,点E为DC边的中点,连接AE并延长交BC的延长线于点F,求证:S四边形ABCD=SABF(S表示面积)问题迁移:如图2:在已知锐角AOB内有一个定点P过点P任意作一条直线MN,分别交射线OA、OB于点M、N小明将直线MN绕着点P旋转的过程中发现,MON的面积存在最小值,请问当直线MN在什么位置时,MON的面积最小,并说明理由实际应用:如图3,若在道路OA、OB之间有一村庄Q发生疫情,防疫部门计划以公路OA、OB和经过防疫站P

25、的一条直线MN为隔离线,建立一个面积最小的三角形隔离区MON若测得AOB=66°,POB=30°,OP=4km,试求MON的面积(结果精确到0.1km2)(参考数据:sin66°0.91,tan66°2.25,1.73)拓展延伸:如图4,在平面直角坐标系中,O为坐标原点,点A、B、C、P的坐标分别为(6,0)(6,3)(,)、(4、2),过点p的直线l与四边形OABC一组对边相交,将四边形OABC分成两个四边形,求其中以点O为顶点的四边形面积的最大值27如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中C=90°,B=E=30

26、76;(1)操作发现如图2,固定ABC,使DEC绕点C旋转,当点D恰好落在AB边上时,填空:线段DE与AC的位置关系是;设BDC的面积为S1,AEC的面积为S2,则S1与S2的数量关系是(2)猜想论证当DEC绕点C旋转到如图3所示的位置时,小明猜想(1)中S1与S2的数量关系仍然成立,并尝试分别作出了BDC和AEC中BC、CE边上的高,请你证明小明的猜想(3)拓展探究已知ABC=60°,点D是角平分线上一点,BD=CD=4,DEAB交BC于点E(如图4)若在射线BA上存在点F,使SDCF=SBDE,请直接写出相应的BF的长28如图1,在平面直角坐标系中,抛物线y=x2+x+3交x轴于A,B两点(点A在点B的左侧),交y轴于点W,顶点为C,抛物线的对称轴与x轴的交点为D(1)求直线BC的解析式;(2)点

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论