世界情六年级数学校本课程_第1页
世界情六年级数学校本课程_第2页
世界情六年级数学校本课程_第3页
世界情六年级数学校本课程_第4页
世界情六年级数学校本课程_第5页
已阅读5页,还剩35页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、 神秘的0.6182000多年前,数学家发现:一条线段分割成大、小两段,若小段与大段的长度之比恰好等于大段与全长的比的话,那么这一比值等于0.618.人们把这个点叫做黄金分割点。有趣的是:人的肚脐是人体总长的黄金分割点;人的膝盖是肚脐到脚跟的黄金分割点。金字塔、巴黎圣母院、埃菲尔斜塔都与0.618有关。人们还发现,一些名画、雕塑、摄影作品的主题,大多在画面的0.618处。因此,大画家达芬奇把0.618称为黄金数。五角星是非常美丽的,这是为什么?(动手量一量,算一算,看是不是这样的。)古代圆形的妙用圆形,也是一个看来简单,实际上是很奇妙的圆形。古代人最早是从太阳,从阴历十五的月亮得到圆的概念的。

2、就是现在也还用日、月来形容一些圆的东西,如月门、月琴、日月贝、太阳珊瑚等等。古代人还发现圆的木头滚着走比较省劲。后来他们在搬运重物的时候,就把几段圆木垫在大树、大石头下面滚着走,这样当然比扛着走省劲得多。当然了,因为圆木不是固定在重物下面的,走一段,还得把后面滚出来的圆木滚到前面去,垫在重物前面部分的下方。大约在6000年前,美索不达米亚人,做出了世界上第一个轮子-圆的木盘。大约在4000多年前,人们将圆的木盘固定在木架下,这就成了最初的车子。因为轮子的圆心是固定在一根轴上的,而圆心到圆周总是等长的,所以只要道路平坦,车子就可以平衡地前进了。想一想:轮子为什么要做成圆的?为什么要将圆心固定在一

3、根轴上?天气预报中的概率过去对降水的预报,一般采用“有雨”或“无雨”,而现在采用概率预报,比如:明天降水概率是80%。怎样理解降水概率呢?给出可能出现降水的百分数,百分数越大,出现降水的可能性越大。一般来讲,概率值小于或等于30%,可认为基本不会降水;概率值在30%-60%,降水可能发生,但可能性较小;概率在60%-70%,降水可能性很大;概率值大于70%,有降水发生。概率天气预报既反映了天气变化确定性的一面,又反映了天气变化的不确定性和不确定程度。在许多情况下,这种预报形式更能适应经济活动和军事活动中决策的需要。天气预报说,明天降水概率是60%。明天一定会下雨吗?地图的用处地图是地球(或星球

4、)在平面上的图形,更确切地说:地图是根据一定的数学法则,将地球(或星球)的自然现象和社会现象通过概括和取舍用符号缩绘在平面上的图形。 且按每一具体地图的用途不同有选择和有说明的显示出若干现象的地理分布和相互联系。地图所表现的是地球的物体和现象在平面上的缩写,但是它不同于地面的写景图、照片或图画,因为它有独特的特性:常见地图的品种很多,但一般都是按一定的数学法则,运用符号系统概括地将各种自然或社会经济现象缩小表示在平面上,并以单张或图集的形式展示给人们阅读、使用。它已成为人们日常工作、学习、旅行经常利用的工具,更是研究地理学及相关科学、从事地理教学工作的重要手段。随着科学技术的迅速发展以及多学科

5、的相互渗透,地图从内容到形式,从理论到方法,从编制到应用都随之不断发展,从而也就形成了许多不是常规形式或采用特殊材料复制的地图,如有声地图、数字地图、立体地图(包括立体模型、计算机辅助制作的三维透视图、光栅地图、互补色地图等)、盲文地图、发光地图、非纸质地图(包括塑料地图、丝绸地图、珠光膜地图)等,我们统称其为特种地图。地图大家族中的这些特殊成员丰富和发展了地图学理论,扩大了地图应用的广度和深度,在国民经济建设、国防建设以及日常生活中起着重要的作用。 找一幅地图,根据地图上的信息,你能知道北京到济南的实际距离是多少千米?你还能知道哪两个城市之间的距离?赛场中的数学数学知识在体育中有着广泛的用途

6、。在低年级学过的队形的排列,以及我们六年级学习的比赛场次、起跑线都用到了数学知识。今天我们说一说六年级所学的数学知识在体育中的运用。大家还记得2002年第17届世界杯足球赛吗?这届比赛共有32个队参加,平均分为8个小组,每个小组有4支球队,在同一小组内,每两支球队之间都要进行一场比赛,这就是单循环比赛。中国队所在的小组有中国、哥斯达黎加、土耳其、巴西4个队。你知道中国队在小组赛中赛了几场吗?巴西队呢?中国队在小组赛中赛了3场,中国对巴西、中国对哥斯达黎加、中国对土耳其;巴西队在小组赛中也赛了3场,巴西对中国、巴西对哥斯达黎加、巴西对土耳其。其中中国对巴西和巴西对中国是一场比赛。也就是说小组内有

7、4个队,任何一个队都要和其他3个队进行比赛,每个队比赛的场次是一样的,都进行3场比赛,一共是12场,但每场比赛都数了两次,所以一共122=6场比赛,也就是说这个小组一共进行了6场比赛。雅典奥运会中国女排重圆二十年的梦想,再次登上冠军领奖台,你知道中国女排经过多少场比赛获得冠军的吗? 你知道在这届奥运会上,女排比赛场次是如何安排得吗?奥运会将12支女子排球队平均分成两个小组,那么你知道每个小组有几支球队吧!首先采用小组内的单循环赛,一共需要多少场比赛呢?其中中国队要赛几场呢?在小组内6支球队进行单循环赛,每两支球队都要赛一场,也就是652=15场,中国队和其他的5支球队都要赛一场,也就是在一个小

8、组内一共进行15场比赛,两个小组就是30场比赛,选出前8强的队伍。其中中国队要进行5场比赛。在四分之一决赛中采用淘汰赛,从8支球队中决出4支球队进入半决赛。4支球队经过四场比赛,决出冠、亚军和3、4名的球队。304438(场)奥运会一共进行了38场女子排球比赛。中国女排在小组内,5场比赛进入8强,一场比赛进入四分之一决赛,一场进入半决赛;最后一场搏杀拿下冠军。5111=8场。中国女排8场比赛,再次登上了冠军的领奖台。计算比赛场次没有数学知识可真不行氧气的发现氧气的发现经历过一段曲折的历史。18世纪初,德国化学家施塔尔(Stahl G E,16601734)等人提出“燃素理论”,认为一切可以燃烧

9、的物质由灰和“燃素”组成,物质燃烧后剩下来的是灰,而燃素本身变成了光和热,散逸到空间去了。这样一来,燃烧后物质的质量应当减轻,但人们发现,炼铁时燃烧过的铁块的质量不是减轻,而是增加了,锡、汞等燃烧后,也都比原先重。为什么燃素跑掉后,物质反而会增加呢?随着欧洲工业革命的发展,金属的冶炼和煅烧在生产实践中给化学提出了许多新问题,冲击着燃素理论。17711772年间,瑞典化学家舍勒(Scheele K W,17421786)在加热红色的氧化汞、黑色的氧化锰、硝石等时制得了氧气,把燃着的蜡烛放在这个气体中,火烧得更加明亮,他把这个气体称为“火空气”。他还将磷、硫化钾等放置在密闭的玻璃罩内的水面上燃烧,

10、经过一段时间后,钟罩内的水面上升了1/5高度,接着,舍勒把一支点燃的蜡烛放进剩余的“用过了的”空气里去,不一会儿,蜡烛熄灭了。他把不能支持蜡烛燃烧的空气称为“无效的空气”。他认为空气是由这两种彼此不同的成分组成的。1774年8月,英国科学家普利斯特里( Priestley J,17731804 )在用一个直径达一英尺的聚光透镜加热密闭在玻璃罩内的氧化汞时得到了氧气,他发现物质在这种气体里燃烧比在空气中更强烈,他称这种气体为“脱去燃素的空气”。舍勒和普利斯特里虽然先后独立地发现了氧气,但由于他们墨守陈旧的燃素学说,使他们不知道自己找到了什么。1774年,法国著名的化学家拉瓦锡(Lavoisier

11、 A L,17431794)正在研究磷、硫以及一些金属燃烧后质量会增加而空气减少的问题,大量的实验事实使他对燃素理论发生了极大怀疑,正在这时,10月份普利斯特里来到巴黎,把他的实验情况告诉了拉瓦锡,拉瓦锡立刻意识到他的英国同事的实验的重要性。他马上重复了普利斯特里的实验,果真得到了一种支持燃烧的气体,他确定这种气体是一种新的元素。1775年4月拉瓦锡向法国巴黎科学院提出报告金属在煅烧时与之相化合并增加其重量的物质的性质公布了氧的发现,他说这种气体几乎是同时被普利斯特里、舍勒和他自己发现的。 求阴影部分的面积(如左图)在腰长为4厘米的等腰直角三角形的腰上做两个直径是4厘米的半圆。那么图中阴影部分

12、的面积是多少?分析:可以将此图转化成一个简单的图形组合(如右图)。现在是不是简单了?阴影部分的面积=圆的面积-上下两个三角形的面积小幽默母亲:明明,你上学有三个月了,你认为语文和数学哪一门好学一些呢?明明:数学好学。妈妈:为什么?明明:因为语文生字多,数学只有0到9这10个数字。聪明的猎人猎人村的米奇不仅枪法准确,而且聪明过人。在一次射击比赛。另一名优秀的猎人米勒和米奇进入了决赛。比赛规定:每人10发子弹,每中一发记20分,脱靶一发则扣12分。比赛结束时,裁判员宣布他俩共得272分,且米奇比米勒多得64分,所以米奇赢得了比赛。可远处观看的村民很想知道他俩各击中了几发,他们便来请教米奇。米奇为了

13、让大家知道的更详细一些,想了一下便说给大家听:“因为我共得了272分,而我比米勒多得64分,所以米勒应该得了(27264)2=104分,那我就得了272104=168分。比赛规定:每中一发记20分,脱靶一发则扣12分,如果我脱靶一发实际就损失了20+12=32分。假设我们俩全击中的话,每人应得2010=200分,现在米勒得了104分就损失了200104=96分,那么他就脱靶了9632=3发,即击中了103=7发;我损失了200168=32分,那我就脱靶了一发,即击中了101=9发。”村民们听了米奇的介绍都恍然大悟,更加佩服米奇了。 神奇的黄金比你发现了吗?我们周围的许多事物都和黄金比有关。黄金

14、分割不仅在古希腊建筑中得到精确的运用,在西方著名古建筑的比例关系中,到处可见这一神秘的数字身影。公元前3000年建造的胡夫大金字塔、法国巴黎圣母院连作为中国古建筑最高成就的北京故宫,其太和门庭院的深度为130米,宽度为200米,长宽比与黄金分割率也十分接近。除了建筑领域,人们还把黄金分割的美学原理应用到文艺创作上。在莫扎特的奏鸣曲、贝多芬的第五交响曲以及巴托克、德彪西、舒伯特等音乐家的创作中,各部分节奏的搭配也运用了“黄金分割”。 你能动手折出一个黄金长方形吗?提示与思考数学上把宽和长的比是0.618的长方形叫做“黄金长方形”。 动手实践准备一张长方形纸条,照样子折一折,你就能折出一个黄金长方

15、形。(1)把宽边与长边对齐折一下,形成一条折痕,然后展开纸条(如图1)。(2)把纸边对齐刚才的折痕端点,折一下,形成一条折痕,然后展开(如图2)。(3)把长方形按图所示(如图3)沿两个折痕端点折一下,并如图在长边上做标记,然后展开。(4)最后在刚才做标记处竖折一下,那么图中阴影部分就是一个黄金长方形。(1) (2)(3) (4)以折出的黄金长方形作参照,找一找身边还有哪些物体的长方形面是黄金长方形。拓展与延伸 试着在这个黄金长方形的内部做一个最大的正方形,剩下的部分又是一个稍小的黄金长方形,照此方法继续做下去,可以得到一个比一个更小的一系列黄金长方形。依次用弧线连接图中正方形一条对角线的两个端

16、点,可以得到一条光滑的曲线,这条曲线叫做“黄金螺线”。黄金分割与造型艺术黄金分割在造型艺术中具有美学价值。舞台上的报幕员并不是站在舞台的正中央,而是偏在台上一侧。以站在舞台长度的黄金分割点的位置最美观,声音传播的最好。艺术家们认为弦乐器的琴马放在琴弦的0.618处,能使琴声更加柔和甜美那么,如何在一条线段上找出黄金分割点呢?温馨提示:请准备好三角尺、圆规。动手与实践1. 设已知线段为AB,过点B作BC垂直于AB,且BC=1/2AB。2. 连接AC。3. 以C为圆心,CB为半径作弧,交AC于D。4. 以A为圆心,AD为半径作弧,交AB于P,则点P就是AB的黄金分割点。测量与计算 美学研究发现:人

17、体下半身(脚底到肚脐)的长度与身高的比例越接近0.618就越有美感。小花妈妈身高168厘米,下半身长102厘米,请问她应穿多高鞋跟的鞋看起来更美?如果她穿上高跟鞋呢?一升有多重近年来,世界原油价格一直在高位运行,有时甚至突破每桶100美元大关。那么,每桶原油是多少呢?桶的大小是固定不变的,1吨原油体积是1170升,相当于7.35桶。提示与思考通过上面的关系,我们可以计算出:11707.35159(升)1吨=1000千克10007.35136(千克)一桶原油大约有159升,重136千克。通过上面的计算,我们可以发现1升原油并不是1千克,大约为0.86千克。那是不是所有的物质都是这样的呢? 小资料

18、1升水重1千克。 1升柴油重0.85千克。 1升汽油重0.75千克。1升花生油重0.96千克。 1升牛奶重1.03千克. 关于地毯的困惑塔克地毯公司接到某航空公司为一新建机场的环形走廊铺设地毯的订货单当塔克先生看到设计图时,他冒起火来,因为图纸上只有与内圆相切的弦长AB为100m这一个数据。(这条线段的两个端点分别都在大圆上,而且经过小圆上的一点。这条线段叫做与小圆相切的弦。)塔克先生只好去找他的设计师夏普先生夏普先生是一位老练的几何学家,不急不忙地说:“塔克先生,我需要知道的是那条弦长,我只要代入一个公式就能求出那圆环的面积”塔克先生面露惊讶之色,略加思考后,随即微笑着说:“谢谢你,夏普先生

19、,但我对于你和你的公式都不需要!也不需要知道这两个圆的面积我马上就可以告诉你结果”你知道塔克先生是怎样算出的吗?提示与思考圆环的面积公式能否帮我们解决问题呢?测量与计算试着画一画,使内、外圆同时缩小,半径差保持不变。内圆半径减小到0时,圆环成了什么图形?弦长100米与这个新图形是什么关系?引入结论:勾股定理:在直角三角形中,两条直角边的平方和等于斜边的平方。圆环的面积是(R2-r2)= (100/2)2一般说来任何一个圆环的面积都必然与一个圆的面积相等,这个圆的直径就是圆环中可以画出的最长的线段。拓展与延伸广场圆形花坛外面铺了一圈鹅卵石,你能想办法算出铺鹅卵石的地面的面积吗?圆圈里的秘密在公园

20、或路旁,经常看到这样的游戏:摊贩前画有一个圆圈,周围摆满了奖品。摊贩会拿出一副扑克让游客随意摸出两张,并说好向哪个方向转,将两张扑克的数字相加(J、Q、K分别为11、12、13、A为1),得到几就从几开始按照预先说好的方向转几步,转到数字几,数字几前的奖品就归游客,唯有转到一个位置(如右图),必须交2元钱,其余的位置都不需要交钱。有人认为,不用花钱就可以玩游戏,而且得奖品的可能性“非常大”,交2元钱的可能性“非常小”。这种观点对吗?提示与思考通过观察可以看到,凡参与游戏的游客不是交了2元钱就是转到微不足道的一些小物品旁,而钟表、玩具等贵重物品就没有一个游客转到过。这是怎么回事呢?是不是其中有“

21、诈”?动手与实践 请你通过抽到的两张扑克牌数字和是奇数还是偶数,揭穿玩扑克牌的秘密。人体中的水分根据生物学家的报告:成年人人体内水分约占人体重的6070%。其中脑脊髓中水占99%,淋巴腺中水占94%,血液中水占70%,肌肉中水占62%,骨骼中水占5%。当胎儿在母体内孕育的时候,水占体重的90%,当婴儿出生后,水占体重的80%,成年人体内水的比例降到了70%,而到了老年以后,水在人体内的比例就降到了50%-60%。 一个人每天大约要消耗20002500毫升水。其中,排尿要排掉10001500毫升水分,排便要排掉100200毫升水分,出汗要排掉600700毫升水分,肺呼吸要排掉 300毫升水分,就

22、是说至少要排掉2000毫升水分。丧失的这部分水要及时补充,食物会补充50%,另外50%,要靠饮水来补充。因此,正常人每天饮水不应低于1250毫升,夏天应补充更多的水。水约占人体组成的70%。男性体内含水分较女性多,约是71%,女性约是69%。测量与计算 请帮小明计算爸爸(体重85千克)、妈妈(体重62千克)身体中的水分含量分别是多少?决策小帮手众数众数(Mode)是一个统计学名词,在统计分布上具有明显集中趋势点的数值,代表数据的一般水平(众数可以不存在或多于一个)。众数就是一组数据中出现次数最多的那个数,用M表示。用众数代表一组数据,可靠性较差,不过,众数不受极端数据的影响,并且求法简便。当数

23、值或被观察者没有明显次序(常发生于非数值性资料)时特别有用,例如:鸡、鸭、鱼、鱼、鸡、鱼的众数是鱼。众数在销售行业是最常用的,代表最多的、需求最大的、最容易销售的。提示与思考一家鞋店在一段时间内的销售情况如下表:尺码/厘米2222.52323.52424.525销售量/双12511731 猜鞋店会关心什么呢?拓展与延伸 一家书店为了制定销售计划,统计了某月的销售情况,如下表:图书类别文艺类少儿类生活类教育类科技类社会类销售量8208本6516本2030本2475本3580本2012本假设你是书店工作人员,你将采用什么方法进行数据分析?怎样制订下个月的销售计划?把自己的计划书写下来。 销售计划书

24、出生的性别比出生性别比是反映某一时期内出生男婴与女婴的数量之比。其数值为每100名女婴对应的男婴数,即:出生性别比=男婴出生数/同期女婴出生数100。西方人口学者常把它称为第二性别比,而把胎儿性别比称第一性别比。出生性别比是人口性别结构的一项重要指标,对总人口性别比、分年龄性别比有着决定性的作用。在没有人为干扰的情况下,出生性别比应该是比较稳定的,变化范围是103107之间,不同国家、民族稍有差别。我国正常值常在107左右。而据2005年初(十三亿人口日相关资料)的统计,我国全国平均出生性别比达119,个别地区达到160,属于畸形偏高。提示与思考 如果出生性别比数值长期偏高,会引发一些什么问题

25、?测量与计算 想一想,如果按照我国的出生性别比正常值107计算,全国13亿人口中男性应比女性多多少人?让人无限遐想的旋转体几何形体与人们的生活有着密切的联系。它们不仅给人们的生活带来方便,还能美化人们的生活。一张很薄的纸旋转起来,就会给人们带来无限的遐想。提示与思考一张长方形纸旋转起来会是什么形状?怎样求它的体积呢?动手与实践找一张长方形纸板,画一条虚线,然后以虚线为轴动手旋转一下,看一看是否能够得到想象中的管体。拓展与延伸在电视节目中,我们经常看到色泽艳丽、变幻多姿的立体图形,它们是怎样形成的呢?一张长方形纸板,沿对角线对折,然后以对角线为轴顺着一个方向进行旋转,会得到什么样的立体图形呢?长

26、方形、正方形和三角形旋转后可以分别得到什么样的立体图形?先大胆猜想一下,然后实践验证。圆锥的表面积我们已经学了长方体、正方体和圆柱体的表面积的计算方法。你会计算圆锥的表面积吗?试试吧!提示与思考要想求出圆锥的表面积,关键是要求出它的侧面积。侧面积怎样求呢?将圆锥的侧面展开,就可以得到一个扇形。可是怎样才能算出这个扇形的面积呢?温馨提示:扇形是与它等半径的圆形的一部分。扇形面积的计算一定与圆的面积计算有关。怎样算呢?测量与计算我们可以用扇形的半径和圆心角来算扇形的面积。圆锥侧面展开的扇形的半径就是圆锥的母线(用字母l表示),可以测量。可是圆心角怎么测量呢?扇形的面积与半径与圆心有关,圆心角的大小

27、可以说又决定于它所对应的弧长,因此,我们有理由说,扇形的面积也决定于它的半径和两半径所夹的弧长。扇形的的弧长即圆锥底面的周长,故 2l=2r,由此可得扇形的圆心角n=360,将其带入扇形面积公式得扇形侧面积= 2l=rl。找一个圆锥形物品,通过测量,算一算它的表面积。拓展与延伸圆面积的推导过程巨人手印问题弗赖登塔儿有一个经典的“巨人手印问题:昨夜外星人访问我校,留下了一个巨大的手印,今夜他还要来,试问:要给他准备的椅子应该有多高?书应该有多大?铅笔应该有多长?如何解决上述问题呢?提示与思考我们学过有关比和比例的知识,你能找到巨人手长与自己手长之间的比例关系吗?怎样推算出巨人的身高、脚长和臂长呢

28、?测量与计算要知道巨人手长与自己手长的比,需要测量哪些数据?能求出巨人手长与自己手长的比吗?拓展与延伸要想知道巨人所用的椅子的高度、书、铅笔的长度,需要测量哪些数据?你能推算出巨人所用的椅子的高度、书、铅笔的长度分别是多少?用圆周率巧破凶案 伽罗华是法国一位杰出的数学天才。一天,伽罗华得知好友鲁柏被刺的不幸消息,急忙奔赴探询。女看门人告诉伽罗华,警察已勘察过现场,没有发现其它线索,只是看到鲁柏手里紧捏着半块没有吃完的苹果馅饼,令人费解。她认为作案人可能就在公寓内,因为案发前后,她一直在传达室,没有看见有人进公寓来。可是这座四层楼的公寓,每层有15间房,住着100多人,情况比较复杂,作案者究竟是

29、谁呢?伽罗华请女看门人带他到三楼,在314号房门前停了下来,问道:“这房间是谁住的?”女看门人答道:“米塞尔。”“这人怎样?”“他爱赌钱,好喝酒,昨天已经搬走了。”“这个米塞尔就是杀人凶手!”数学家肯定地说。女看门人非常惊奇,忙问:“有什么根据?”数学家分析说:“鲁柏手里的馅饼就是一条线索。馅饼英语叫Pie,而希腊语Pie就是,即通常说的圆周率。人们在计算时,常取的近似值3.14。鲁柏是一位喜欢数学,善于思考的人,临死时他终于想到用馅饼来暗示凶手所住的房间。”根据数学家的分析,警方经过侦察,最后逮捕了米塞尔。经审讯,米塞尔承认因赌博输钱,看到鲁柏家里汇来巨款,遂生杀机。伽罗华是一位杰出的数学天

30、才,可惜他在人世间仅活了21个春秋!他的早逝,无疑是世界数学界的一大损失。聪明的狄多 在希腊传说中,推罗国王穆顿有个聪明漂亮的公主叫狄多。狄多在她的王国里过着幸福快乐的生活,自由自在、无忧无虑,可是好景不长,不幸的事情发生了,国家发生叛乱,她只好逃离了家园。可怜的狄多赶紧逃亡到了非洲西海岸,她想在这儿生活下来,于是她拿出随身携带的珠宝、玉器、金币,打算从当地酋长雅尔巴斯那里买些土地盖房子。狄多对酋长说:“我只要用一张牛皮包起来的地方。”酋长想也没想,一块牛皮包起的地方能有多大啊,自己捡了个大便宜,于是爽快的答应下来。狄多把牛皮剪成长长的细条,准备用牛皮来圈地。她以海为界,用牛皮条圈了一个半圆,

31、圈出了一块相当大的面积。酋长佩服狄多的智慧,心甘情愿的把地给了她。后来,狄多在那儿建立了迦太基城。今天,还保存着迦太基的古迹。你知道弧三角形吗?弧三角形,又叫莱洛三角形, 是机械学家莱洛首先进行研究的。弧三角形是这样画的:先画正三角,然后分别以三个顶点为圆心,边长长为半径画弧得到的三角形(如下图)。平面上一凸形封闭曲线,不论如何转动,其宽度永远不变,则称之定宽曲线或恒宽曲线。也就是说对于一个封闭的闭曲线,如果用任意两条平行线去夹逼,平行线的距离为定值。(圆就是一种最简单的定宽曲线)谁会想到用弧三角形状的钻头是可以转方孔的呢?这种钻头早在90年前就由在美国的英国工程师瓦特发明的。这个奇妙的发明应

32、用了定宽曲线的一个基本性质。溶液中的百分数在用百分数解决的问题中有一类叫溶液配比问题。而溶液在日常生活中随处可见:将糖溶于水就得到了糖水,其中糖叫溶质,水叫溶剂,糖水叫溶液。如果水的量不变,那么糖加得越多,糖水就越甜,也就是说,糖水甜的程度是由糖(溶质)与糖水(溶液=糖+水)二者质量的比值决定的,这个比值就叫糖水的含糖量或糖含量。类似地,酒精溶于水中,纯酒精与酒精溶液二者质量的比值就叫酒精含量。溶质含量通常用百分数表示。例如:将10克糖溶于90克水中,得到糖水含糖量(溶质质量分数)是10%。溶质、溶剂、溶液及溶质含量有如下基本关系:溶液重量=溶质重量+溶剂重量,溶质含量(溶质质量分数)=溶质重

33、量溶液重量100%,溶液重量=溶质重量溶质含量,溶质重量=溶液重量溶质含量。小幽默结果老师:今天我们来学减法。假如,你哥哥有5个苹果,你拿走3个,结果是怎样?明明:结果他肯定会揍我一顿。体积的变化你知道水结成冰,冰化成水,体积会发生什么变化吗?冬天,随着温度的下降,人们常在自来水管的外面捆扎发泡塑料。这是为什么呢?因为,冬天自来水管的水会结冰,水从4降到0的过程中,不是按照热胀冷缩的原理体积缩小,而是体积膨胀,这样就会使劲地撑胀自来水管,使自来水管破裂。从物理学的角度分析,当气温低于水的凝固温度时,水就会凝固。凝固后的水,也就是冰,密度比水小,质量却和水一样,所以它的体积增大,把原本只适合装水

34、的管子撑破了。在玻璃瓶里的水结冰,和有可能使玻璃瓶胀碎,也是这个道理。由此可见,人们在自来水管的外面捆扎发泡塑料就是为了保温,防止水管里的水受气温下降结成冰,将水管撑破。春天随着气温上升,漂浮于河水表面的冰块融化后,就河水表面而言不会发生变化,但从物理学的角度来讲,水面便会下降。因为冰融化的时候,从0升温到4时,体积缩小。当冰块在外力作用下全部浸入水面以下时,“等体积”的冰化成水时,密度会增大,体积会变小,因此此时水面就会下降。如果玻璃瓶内的冰慢慢融化,玻璃瓶是不会碎的。冬天在南方的室外,可以看到薄冰与下面的水有一些空间,就是上层的水结冰之前,体积膨胀的原因。有时候夏天路面会向上拱起,这是路面

35、膨胀所致。所以路面每隔一段距离都会留有空隙。水面上的大桥每隔一段距离就有一处连接的缝隙,道理也是如此。电线夏天多下垂,而在冬天则绷得较紧。夏天,房门会胀的关不上;骑自行车的人要给自行车放气,不然车胎会爆。买来的罐头瓶很难打开,是因为工厂生产时放进去的是热的,气体膨胀,冷却后里面气体体积减小,外面大气压大于内部,所以难打开。我们可以将罐头微热,这样就很容易将罐头瓶打开了。比萨斜塔中的圆柱比萨斜塔是世界著名建筑奇观和旅游胜地之一。它坐落在意大利西部古城比萨的教堂广场上,是比萨主教堂综合建筑中的钟塔,亦是建筑群中最著名的建筑。比萨斜塔建于1174 年,1350年竣工,全部用大理石砌成。该塔开始建造时

36、是直立的,但建到第三层时,由于地基打得不深,上层强度低,塔身开始倾斜,工程遂中止。94年后,又重新继续施工,并加强了一系列防倾斜措施。但全塔建成后,塔顶中心点还是偏离垂直中心线。目前,塔顶中心点已偏离垂直中心线 4.4 米。比萨斜塔外观呈圆柱形,高 54 米多,分8层,底层有石柱15根,上面6层各31根圆柱,顶层为钟塔,有石柱12根,建成213个拱形券门。塔内有楼梯300阶。比萨斜塔为罗马式建筑风格,经过600多年的风雨,该塔巍然屹立,“斜而不倾”,使该塔闻名于世。1590年意大利物理学家伽利略曾在塔上做了著名的“两个铁球同时落地”的实验,推翻了希腊学者亚里斯多德的不同重量的物体落地速度不同的

37、理论,使比萨斜塔更加名扬四海。比萨斜塔至今仍在不断倾斜,为此许多人都为它担忧。圆锥在建筑中的应用建筑中的铅锤都是圆锥形的。你知道这是为什么吗?其实就是铅锤的作用。铅锤在地球重力的作用下,总是竖直向下的,而地面是水平的,所以二者是垂直关系。用铅锤靠近墙角,如果墙和铅锤的线重合或平行,则说明墙与地面是垂直的。飞机机头是圆锥形的飞机的外形不同,受到的阻力也不同,有角的外形受到的阻力大于圆形,飞机设计首先是照顾气动外形,阻力一定要小,以满足航程和速度的战术要求,然后才是怎么安装雷达的问题。飞机前面的圆锥是雷达整流罩,飞机最好的气动外形就是尖锥状头部(少数隐形飞机是近似圆形的多边尖锥机头),前视的雷达只

38、能放那里面。而横切面为圆形的机头里放雷达,想得到最大雷达面积的话,雷达天线就最好是圆形的.其它形状都肯定比圆形面积小。雷达整流罩是流线型的圆外表面,最直接的作用就是为了减低阻力,功能是保护里面的设备和各种装置,另外,此整流罩的材料是玻璃钢,不是钢铁或合金制成的。金字塔有多高据说,埃及的大金字塔修成一千多年后,还没有人能够准确的测出它的高度。有不少人作过很多努力,但都没有成功。一年春天,泰勒斯来到埃及,人们想试探一下他的能力,就问他是否能解决这个难题。泰勒斯很有把握的说可以,但有一个条件法老必须在场。第二天,法老如约而至,金字塔周围也聚集了不少围观的老百姓。泰勒斯来到金字塔前,阳光把他的影子投在

39、地面上。每过一会儿,他就让别人测量他影子的长度,当测量值与他的身高完全吻合时,他立刻在大金字塔在地面的投影处作一记号,然后在丈量金字塔底到投影尖顶的距离。这样,他就报出了金字塔确切的高度。在法老的请求下,他向大家讲解了如何从“影长等于身长”推到“塔影等于塔高”的原理。也就是今天所说的相似三角形定理。泰勒斯在数学方面划时代的贡献是引入了命题证明的思想。它标志着人们对客观事物的认识从经验上升到理论,这在数学史上是一次不寻常的飞跃。在数学中引入逻辑证明,它的重要意义在于:保证了命题的正确性;揭示各定理之间的内在联系,使数学构成一个严密的体系,为进一步发展打下基础;使数学命题具有充分的说服力,令人深信

40、不疑。证明命题是希腊几何学的基本精神,而泰勒斯就是希腊几何学的先驱。他把埃及的地面几何演变成平面几何学,并发现了许多几何学的基本定理,如“直径平分圆周”、“等腰三角形底角相等”、“两直线相交,其对顶角相等”、“对半圆的圆周角是直角”、“相似三角形对应边成比例”等,并将几何学知识应用到实践当中去。惊人的巧合在埃及首都开罗郊外的吉萨,有一座举世闻名的胡夫金字塔。作为人造建筑的世界奇迹,胡夫金字塔首先是世界上最大的金字塔,刚开始建成时的胡夫金字塔高度为146.59米,底边长度为230米,是由250多万块每块重约2.5-50吨的巨石垒砌而成的。胡夫金字塔的建成时间大约在距今4700年前,随着岁月的流逝

41、,在雨雪风沙的击打之下,今天的胡夫金字塔已经不复当年的雄姿,现在的胡夫金字塔的高度仅为138米,而低边的长度则是220米,尽管如此,它仍然不失为世界之最,高高矗立在蓝天白云与满目黄沙之间,蔚为人间的壮观。但更为令人吃惊的奇迹,并不是胡夫金字塔的雄壮身姿,而是发生在胡夫金字塔上的数字“巧合”:人们到现在已经知道,由于地球的形状是椭圆形的,因而从地球到太阳的距离,也就在14624万公里到15136万公里之间,从而使人们将地球与太阳之间的平均距离14659万公里定为一个天文度量单位;如果现在把胡夫金字塔的高度146.59米乘以十亿,其结果不正好是14659万公里吗?事实上,这个数字很难说是出于巧合,

42、因为胡夫金字塔的子午线,正好把地球上的陆地与海洋分成相等的两半。难道说埃及人在远古时代就能够进行如此精确的天文与地理测量吗?出乎人们意料之外的数字“巧合”还在不断地出现,早在拿破仑大军进入埃及的时候,法国人就对胡夫金字塔的顶点引出一条正北方向的延长线,那么尼罗河三角洲就被对等地分成两半。现在,人们可以将那条假想中的线再继续向北延伸到北极,就会看到延长线只偏离北极的极点6.5公里,要是考虑到北极极点的位置在不断地变动这一实际情况,可以想象,很可能在当年建造胡夫金字塔的时候,那条延长线正好与北极极点相重合。除了这些有关天文地理的数字以外,胡夫金字塔的底部面积如果除以其高度的两倍,得到的商为3.14

43、159,这就是圆周率,它的精确度远远超过希腊人算出的圆周率3.1428,与中国的祖冲之算出的圆周率在7之间相比,几乎是完全一致的。同时,胡夫金字塔内部的直角三角形厅室,各边之比为3:4:5,体现了勾股定理的数值。此外,胡夫金字塔的总重量约为6000万吨,如果乘以10的15次方,正好是地球的重量!所有这一切,都合情合理地表明这些数字的“巧合”其实并非是偶然的,这种数字与建筑之间完美地结合在一起的金字塔现象,也许有可能是古代埃及人智慧的结晶。正如有人所说:“数字是可以任人摆布的东西,例如巴黎埃菲尔铁塔的高度为299.92米,与光速299776000米/秒相比,前者正好是后者的百万分之一,而误差仅仅

44、为千分之0.5。这难道仅仅是巧合吗?还是人们对于光速已经有所了解呢?如果不是为了显示设计者与建造者的智慧,也就无需在1889年以修建铁塔的方式来展示这一对比关系。”事实上,胡夫金字塔的奇异之处,早已超出了地球上人们的想象力。这样,以胡夫金字塔为典型的大金字塔现象,对于地球人来说,也许始终是一个难解之谜。抽屉问题1947年,匈牙利数学家把这一原理引进到中学生数学竞赛中,当年匈牙利全国数学竞赛有一道这样的试题:“证明在任何六个人中,一定可以找到三个互相认识的人,或者三个互不认识的人。” 这个问题乍看起来,似乎令人匪夷所思。但如果你懂得抽屉原理,要证明这个问题是十分简单的。我们用A、B、C、D、E、

45、F代表六个人,从中随便找一个,例如A吧,把其余五个人放到“与A认识”和“与A不认识”两个“抽屉”里去,根据抽屉原理,至少有一个抽屉里有三个人。不妨假定在“与A认识”的抽屉里有三个人,他们是B、C、D。如果B、C、D三人互不认识,那么我们就找到了三个互不认识的人;如果B、C、D三人中有两个互相认识,例如B与C认识,那么,A、B、C就是三个互相认识的人。不管哪种情况,本题的结论都是成立的。 由于这个试题的形式新颖,解法巧妙,很快就在全世界广泛流传,使不少人知道了这一原理。 圆周率的秘密圆周率从它的数字排列规律是“无章可循”这一点来讲,是没有规律的。事实果真如此吗?数学家法格逊的成就,基于他的一个猜

46、想,即在值的数值式中各数码出现的概率相等。法格逊想验证它,却无能为力,人们想验证它,又苦于已知的位数太少。随着电子计算机的出现,值位数越来越多。为验证法格逊猜想创造了条件。1973 年,法国学者让盖尤与芳旦娜小姐合作,对的前一百万位小数中各数码出现的频率,进行了有趣的统计,得出以下结果:从上表数据看来,法格逊的想法应当是正确的!“中位数”简介中位数(Median)作为统计学名词,是将数据排序后,位置在最中间的一个数字(或两个数字的平均值)叫做这组数据的中位数。中位数将数据分成两部分,一部分大于该数值,一部分小于该数值。求中位数的方法是:如果总数个数是奇数的话,按从小到大的顺序,取中间的那个数;

47、如果总数个数是偶数个的话,按从小到大的顺序,取中间那两个数的平均数。中位数可避免极端数据,代表着数据总体的中等情况。在一组数据中,如果个别数据有很大变动,选择中位数表示这组数据的“集中趋势”就比较合适。在物价涨幅攀升的时候,适当提高企业退休人员养老金标准以及在职职工的工资,有利于保障他们的基本生活,并逐步提高生活质量。而一个“平均数”会掩盖很多问题。网上流传这样一首打油诗:“张村有个张千万,隔壁九个穷光蛋,平均起来算一算,人人都是张百万。”这个问题不是“平均数”的错,也不是统计学的错。打油诗中“张村”个人财产的中位数是0。这时“平均数”不能说明问题,中位数就说清楚了。王冠之谜公元前287年,在

48、古希腊的叙拉古市,诞生了一个很有才华的人,他的名字叫阿基米德。按照当时的惯例,阿基米德被送到埃及的王家学校去学习。他学成回国以后,把所学知识用于实践,解决了许多实际问题受到了国王的赏识。国王希艾罗是一个勇敢善战的人。有一次打了胜仗,为了庆祝胜利,他决定要献给神一顶王冠,于是下令找来了一个高明的金匠来制作。国王的会计官给了金匠必需的金子,不久王冠制成了,它玲珑剔透,金光闪闪,国王非常满意。但是,人们私下传说金匠并没有把全部金子用到王冠上,而是掺进了一部分银子。国王听了,也起了疑心。他把金冠称一下,和交给金匠的金子一样重,颜色也黄澄澄的,看不出掺进了什么。如果为鉴别真假打碎这个精致的王冠,又觉得可

49、惜。他让阿基米德解开这个谜。阿基米德接受了这个任务,回到家里左思右想,一直没想出好办法来。他茶饭无思,焦躁不安,带着满脑子问题在洗澡。澡盆里装满了水,阿基米德慢慢把身子沉了进去。哗啦哗啦,水不断溢了出来。以前,出现这现象谁也没有思索过它的意义。现在,阿塞米德一心在寻找解决问题的方法,所以一下子从澡盆溢水的现象中受到启发。他意识到从盆子里溢出来的水就等于人体进入水中的体积,如果在容器里装满水,把金冠沉进去,根据溢出的水量,也就可以知道王冠的体积了。只要弄清王冠的体积,下一步就好办了。想到这里,阿基米德忘记了自己在洗澡,光着身子从浴盆里跑出来,大声喊着:“解决了!解决了!”他首先测出王冠的重量,然后准备了和王冠一样重的一块纯金块和一块纯银块,还有一个装满水的容器。阿基米德把纯金块慢慢沉入容器,算出溢出的水量,根据他的推理,这些水的体积就是纯金块的体积。阿基米德再把纯银块沉入装满水的容器,根据溢出的水量又算出纯银块的体积。当然

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论