数理统计课程设计一元线性回归_第1页
数理统计课程设计一元线性回归_第2页
数理统计课程设计一元线性回归_第3页
数理统计课程设计一元线性回归_第4页
数理统计课程设计一元线性回归_第5页
免费预览已结束,剩余4页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、二氧化碳吸附量与活性炭孔隙结构的线性回归分析摘要:本文搜集了不同孔径下不同孔容的活性炭与CO2R附量的实验数据。分别以同一孔径下的不同孔容作为自变量,CO徽附量作为因变量,作出散点图。选取分布大致呈直线的一组数据为拟合的样本数据。对样本数据利用最小二乘法进行回归分析,参数确定,并对分析结果进行显著性检验。同时利用matlab的regress函数进行直线拟合。结果表明:孔径在3.03.5nm之间的孔容和CO2吸附量之间存在较好的线性关系。关键字:活性炭孔容CO2吸附量matlab一、问题分析1.1.数据的收集和处理本文主要研究同一孔径的孔容的活性炭和co2吸附量之间的线性关系,有关实验数据是借鉴

2、张双全,罗雪岭等人的研究成果1。以太西无烟煤为原料、硝酸钾为添加剂,将煤粉、添加剂和煤焦油经过充分混合后挤压成条状,在600c下炭化15min,然后用水蒸气分别在920c和860c下活化一定时间得到2组活性炭,测定了CO2M附等温线,探讨了2组不同工艺制备的活性炭的CO2吸附量和孔容的关系.数据如下表所示:编号孔容/(10Lg)CO2R附量1/(mLg)0.50.8nm0.81.2nm1.21.8nm1.82.2nm2.22.2nm2.53.0nm3.03.5nm17.1816.224.475.270961156426.5914.418.453.75085.69155.134.541118.9

3、716578.39153.745.1313.429.910.3907612253.754.1610.518.983.87880.511361.764.9212.123.481.672569953.675.0812.623.893.58677.812265.585.291325.188.46966.410757.797.4716.926.946.47893.210758.2105.441321.444.19198.613776.6111.8164.618.353.111411014275121.2427.739.512611498.618398.7表1:孔分布与CO2吸附值编号112是在不同添加

4、剂量,温度,活化时间处理下的对照组。因为处理方式不同得到不同结果是互不影响的,可以看出CO2的吸附量的值是互相独立的。我们将不同孔径下的孔容分为17组。作出不同孔径下与CO21附量的散点图如下:量附吸2OC1001180*0604r401102468孑溶量附吸2OC1008040量附吸2OC100-q80:V760<100401111152025303540吸2OC孑溶10203040506070孑密100一806040050100150孑密量附吸2OC100-8060og".|G-7C7UVU40111406080100120100孑溶量附80260oC40111'1

5、5060708090100110孑密806040量附吸2OC100-80VQ4060401111180100120140160180200孑溶图1:不同孔容与CO21附量的散点图图1中从左往右依次是第1到第7组孔容,从图中可以看出第五、六、七组的点大致分散在一条直线附近,说明两个变量之间有一定的线性相关关系。且自变量的变化导致因变量CO2的浓度变化,因变量变化具有独立性。我们就选取第七组的数据进行回归分析。二、问题假设1 .假设误差分布服从正态分布。2 .为了简化模型,便于回归分析,我们不考虑实验中各种因素对活性炭吸附的影响,考虑孔容与co2吸附量的数据之间的线性关系。三、模型建立3.1 .回

6、归参数的引进回归函数y=f(x)=E(Y|X=x)是线性函数的回归分析称为线性回归,当可控制变量只有一个时,即回归函数为y=f(x)=P0+PiX,那么;Y=Bo+。ix+*(i1:N(0,仃2)称为一元线性回归模型,上式称为Ytx的一元线性回归方程或者一元线性回归直线,P。、Bi称为回归系数,常数久、身、。2均未知。3.2 回归方程的构建由于总体回归方程y=f(x)=汽+电乂中的参数Po、冏在实际中并不知道,需要通过样本值对它们进行估计,得到估计值用,耳,从而得到样本回归方程丫=同+因x,此样本方程可用作总体回归方程y=f(x)=E(Y|X=x)的估计。通常可用最小二乘法估计得到公式由于总体

7、回归方程y=f(x)=F0+Pix中的参数久、£在实际中并不知道,需要通过样本值对它们进行估计,得到估计值算,耳,从而得到样本回归方程丫=耳)十耳x,此样本方程可用作总体回归方程y=f(x)=E(Y|X=x)的估计。通常可用最小二乘法估计得到公式rnz(xi-x)(yi-y)?i-nSZ(xi-x)2(2)日?0=y-?x廿一1n一1n其x=-Zxi,Y=£Yi,记12lxY='、'XiYi-12xYi11xx?1=1xyxx12vxi2i1-12x2121yy八Yi2-12Y2i4%=Y-Zxnini4Se=ST-SR=10-221Kx可得eirxxxxI

8、.?-1xy/1xxxvxx?0=Y-?x2.3求一定孔容下的CO酌吸附量的回归直线方程利用mat1ab对数据进行计算,结果如下表所示头驳编会孔容XCO级附量Yi2x2YiXX111564132254096736029155.182813036.015014.139153.782812883.694886.7412253.7148842883.696551.4511361.7127693806.896972.169953.698012872.965306.4712265.5148844290.257991810757.7114493329.296173.9910758.2114493387.2

9、46227.41013776.6187695867.5610494.21114275201645625106501218398.7334899741.6918062.1Z1429773.517744551820.2795689.3表2:孔容与C02M附度的回归计算讲结果代入上上述公式可得下列计算表:vx=1429.00X=119.08Zx2=177445.00nx2=2129340.00l=7274.921 xxSe=201.66n=12ZXYi=95689.30nXy=1148271.601. =3578.34xy、yi=773.50y=64.46“y2=51820.27ny2=621843

10、.24lyy=1961.75二2=63.77丁-l川=0.491xyxxr0=y_x?=5.88表3:回归参数的计算表由此可得线性回归方程为:y=0.49x+5.88(4)四、回归方程的显著性检验对回归方程是否有意义做判断就是对如下的检验问题做出判断:H0邛1=0vsH1:01#0(5)拒绝域Ho表示回归方程是显著的。利用F检验对参数进行检验。经计算有St=lyy=63.77fT=11(6)Sr=印xx=48.42fR=1(7)Se-St-SR-15.35fe-10(8)4.1 F值检验取显著水平a=0.05,其拒绝域为:查表可得拒绝域的值为:F之4.96计算得f=S=87.28,远远大于F的

11、临界值,说明拒绝原假设,原Se/(n-2)假设不成立,自变量和因变量有着显著的线性关系。4.2 .p值检验将(6)(7)(8)中的各平方和和自由度移入方差分析表,继续进行计算可得:来源平方和自由度土”F比P值回归1760.09311760.09387.2820.000b残差201.6561020.166总计1961.74911这里p值很小,因此,在显著性水平0.01下回归方程是显著的五、计算方法的涉及和计算机的实现4.1 用matlab拟合直线:先将数据以txt格式保存,再用dlmread读取ASCII码文件。调用matlab中的regress多元线性回归函数(代码见附录),对12个样本数据进

12、行拟合,作出散点图和直线拟合图在一张图上如下:图2:孔容和CO2吸附量的直线拟合100111111195-90609040容1孔从图中可以看出样本点大致分布在直线附近,拟合效果比较好。4.2 直线参数的估计值的置信区间以及三种检验利用regess函数求出参数的估计值和置信区间以及参数的检验统计量(设置a=0.05)如下:CommandWindov/基数估计值置信区间®B05.S843-8.3S08,20.1495P10,49190.3746,0.6092R*2=0.8972F=87,2818p<2,9541e-06/2=20.1656A»I图3:用matlab计算的参

13、数值和检验值。其中,RA2=0.8972指因变量(CO2吸附度)有89.7%可由模型确定,F的值远远超过F的临界值。P远小于%因而模型从整体上看是可用的。六、主要的结论孔容和CO2吸附量之间存在线性关系,经过显著性检验,线性方程回归效果较好,即线性方程能基本描述孔径范围3.03.5nm的活性炭孔容和CO2M附量七、参考文献1张双全,罗雪岭,郭哲,董明建,岳晓明.CO2吸附量与活性炭孔隙结构线性关系的研究J.中国矿业大学学报.2008(04)附录Matlab制作散点图:M=dlmread('co2.txt');%W取ASCII码文件fori=1:1:7subplot(4,2,i)

14、x1=M(:,i);y=M(:,8);plot(x1,y,'bo');xlabel('孔容),ylabel('CO2吸附量');endMatlab直线拟合:clc;formatshortg;M=dlmread('co2.txt');%W取ASCII码文件x1=M(:,7);y=M(:,8);plot(x1,y,'bo');b=regress(y,ones(size(x1),x1);%b=B0B1',列向量x1=sort(x1);%$升序排序,用于画图y=ones(size(x1),x1*b;%d!用矩阵乘法holdon;plot(x1,y,'-r');title('图2:孔容和CO2吸附量的直线拟合')xlabel('孔容);ylabel('CO2吸附量');holdoff;Matlab参数估计:clc;formatcompact;formatshortg;M=dlmread('co2.txt');%W取ASCII码文件x1=M(:,7);y=M(:,8);b,bint,r,rint,stats=regress(y,ones(size(x1),x1,0.05);fprintf('

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论