版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、高一数学说课稿高一数学说课稿1 各位评委、老师: 大家好,我说课的内容是人教A版普通高中课程标准实验教科书A版数学必修一第二章2.2.2对数函数及其性质。 我说课的程序主要有教材分析、学情分析、教法与学法、教学过程、板书设计等五个部分。 一、教材分析 本节内容是在学习了指数函数和对数概念后,通过具体实例了解对数函数模型的实际背景,学习对数函数概念进而研究对数函数的图象和性质。学生已掌握的指数函数的图象和性质为类比学习对数函数提供了前提,同时对数函数作为常用数学模型在人口、考古等生活生产中有广泛的应用,为学生进一步学习、参加生产和实际生活提供必要的基础知识。而本节蕴含的归纳、类比、数形结合的思想
2、为培养学生探究、发现的能力奠定基础。 数学课程标准要求通过具体实例初步理解对数函数的概念,体会对数函数是一类重要的函数模型,能借助计算器或计算机画出具体对数函数的图象,探究并了解对数函数的单调性与特殊点。依据以上标准和学生学习发展方面的要求,我制定了如下教学目标: 知识与技能:理解对数函数的概念、掌握对数函数的图象和性质;培养学生观察、分析、归纳、类比的能力。 过程与方法:类比指数函数的学习,从特殊到一般,通过对不同底数的对数函数图象的分析、归纳出对数函数的性质。 情感态度价值观:培养学生对待知识的科学态度、勇于探索和创新的精神. 结合教学内容和教学目标,考虑到学生对抽象事物的理解可能存在困难
3、,制定如下的教学重点、难点: 重点:对数函数的概念、图象和性质; 难点:对数函数的图象、性质,底数a对对数函数的图象和性质的影响; 二、学情分析 对于高一的学生来说,刚进入一个新的学习阶段,有较强的好奇心,且在之前指数函数的学习中已初步掌握了研究函数的方法,但对抽象事物的理解有所欠缺,对对数概念的理解还不够透彻。 三、教学与学法 教学过程是教师和学生共同参与的过程,要启发学生自主性学习,充分调动学生的积极性、主动性,通过指数函数的图象、性质类比学习对数函数的图象、性质,在教学中引导学生围绕图象思考,数形结合,加强直观教学,同时在例题的讲解中,由易到难,由具体到抽象。为有效地渗透数学思想方法,结
4、合所要完成的教学目标,并为激发学生的学习兴趣,我采用以引导探究为主,启发学生思考、分析、归纳,在提出猜想后通过投影仪演示底数变化对对数函数图象的影响。 老师的教是为学生更好地学,学生是活动的主体,我确定学法为自主探究法,学生在老师的引导下通过观察、分析做出归纳。 四教学过程 教学过程分为以下环节: 实例引入、直观感知总结类比、形成概念类比探究、分析归纳知识应用、提升能力师生交流、归纳小结作业布置 (一)实例引入、直观感知 1、在某细胞分裂过程中,细胞个数y是分裂次数x的函数 ,因此,知道x的值(输入值是分裂次数)就能求出y的值(输出值为细胞的个数),这样就建立了一个细胞个数和分裂次数x之间的函
5、数关系式. 问题一:这是一个怎样的函数模型类型呢? 设计意图:复习指数函数 问题二:如果知道了细胞个数y,如何求分裂的次数x呢?这将会是我们研究的哪类问题? 设计意图:为了引出对数函数 问题三:在关系式 每输入一个细胞的个数y的值,是否一定都能得到唯一一个分裂次数x的值呢? 设计意图:既为了更好地理解函数,也是为了让学生更好地理解对数函数的概念. 2、 在221的例6中,考古学家利用 估算出土文物或古遗址的年代,对于每一个C14含量P,通过关系式,都有唯一确定的年代与之对应同理,对于每一个对数式 中的 ,任取一个正的实数值,均有唯一的值与之对应,所以 的函数。 问题三:你能在以前的学习中找到类
6、似以上两个函数的例子吗?(促进学生思考这种函数的特点) 问题四:你能类比指数函数得到此类函数的一般式吗? 设计意图:体现了类比和特殊到一般的数学思想 (二)总结类比、形成概念 问题五:你能根据指数函数的定义给出对数函数的定义吗? (师生共同归纳出对数函数的定义) 问题六: 与 中的x,y的相同之处是什么?不同之处是什么? 设计意图:促进学生更好地理解对数函数与指数函数的联系,从而得到对数函数的定义域 (三)类比探究、分析归纳 问题:有了研究指数函数的经历,你会如何研究对数函数的性质? 设计意图:提示学生进行类比学习 合作探究1;在同一直角坐标系中画出下列函数的图象,并观察图象,探求他们之间的关
7、系。 , 合作探究2:结合指数函数的学习经验,你有什么猜想?在同一坐标系中画出 与 验证。 设计意图:体现“从特殊到一般”、“从具体到抽象”的方法。 教师通过几何画板动态演示对数函数图象随底数变化的规律,进一步促进学生理解对数函数的图象特点。 合作探究3:对照指数函数的性质,总结归纳对数函数的性质. (学生讨论并交流各自的发现成果,教师结合学生的交流,适时归纳总结,并板书对数函数的性质) (四)知识应用、提升能力 例1:求下列函数的定义域 (1) ( ) (2) ( ) (该题主要考查对数函数 的定义域 ,可在此总结函数定义域的限制) 例2:利用对数函数的性质,比较下列各组数中两个数的大小:
8、(1) , (2) , (3) , (4) , , 设计意图:学生通过回顾利用指数函数的有关性质比较大小的步骤和方法,完成前3小题,第四题可通过教师的适当点拨完成解答,最后进行归纳总结比较数的大小常用的方法 思考巩固:已知 ,比较m,n的大小 设计意图:该题不仅运用了对数函数的图象和性质,还培养了学生数形结合、分类讨论等数学思想,但有一定难度 (五)师生交流、归纳小结 由学生小结,相互补充完善,教师再次强调对数函数在生活生产中的应用,既首尾呼应又为后续学习对数函数的应用铺垫。 (六)布置作业 教材P73 练习1,2 设计意图:练习难度不大,是对本节知识的巩固。 高一数学说课稿2 各位领导、各位
9、老师: 大家好! 今天我说课的题目是两角差的余弦公式。我计划从教材背景、教学目标、教学方法、教学过程、教学评价等方面来谈谈我对本节课的理解。 背景分析 1、教材所处的地位和作用: 两角差的余弦公式是新课标人教版数学必修四第三章第一课时的教学内容,是本模块第一章三角函数和第二章平面向量相关知识的延续和拓展。其中心任务是通过已学知识,探索建立两角差的余弦公式。它不仅是前面已学的诱导公式的推广,也是后面其它和(差)角公式推导的基础和核心,具有承前启后的作用,是本章的重点内容之一。 2、重点,难点以及确定的依据: 对本节课来说,学生最大的困惑在于如何得到公式.所以, 本节课的教学重点是:两角差的余弦公
10、式的探究和应用; 教学难点是:两角差的余弦公式的由来及证明; 引导学生通过主动参与,独立探索。 教学目标设计 (1)知识与技能: 本节课的知识技能目标定位在公式的向量法证明和应用上;学会运用分类讨论思想完善证明;学会正用、逆用、变用公式;学会运用整体思想,抓住公式的本质.在新旧知识的冲撞过程中,让学生自主地对知识进行重组、构建,形成属于自己的知识结构体系. (2)过程与方法: 创设问题情景,调动学生已有的认知结构,激发学生的问题意识,展开提出问题、分析问题、解决问题的学习活动,让学生体会从“特殊”到“一般”的探究过程;在探究过程中体会化归、数形结合等数学思想;在公式的证明过程中,培养学生反思的
11、好习惯;在公式的理解记忆过程中,让学生发现数学中的简洁、对称美;在公式的运用过程中,培养学生严谨的思维习惯和自我纠错能力. (3)情感、态度与价值观: 体验科学探索的过程,鼓励学生大胆质疑、大胆猜想,培养学生的“问题意识”,使学生感受科学探索的乐趣,激励勇气,培养创新精神和良好的团队合作意识. 通过对猜想的验证,对公式证明的完善,培养学生实事求是的科学态度和科学精神. 教法设计 1、学情分析: 学生刚刚学习了同角三角函数的变换及平面向量的知识,对用举反例推翻猜想、运用单位圆、用向量解决三角问题已经有了一定的基础,但还远未达到综合运用这些方法自主探究和证明的水平. 教学手段: (1)从知识的认知
12、程序上看,老师看问题从整体到局部,而学生却是从局部到整体。本节课尝试将“带着知识走向学生”的接受式教学模式转变为“带着学生走向知识”的探究式教学模式,充分尊重学生的主体地位. (2)本节课的教法采用了“一个主题两种教学”的设计模式.一个主题:公式探究与应用,两种教学:显形教学(知识能力教学)、隐性教学(情商培养),实践两种教学相互促进的人性化教学理念. (3)在课堂上营造民主、开放、平等的教学氛围,注重教学评价的多元性,将简单的结果评价上升为对过程的评价;将一味的知识评价拓展为能力评价,突出学生的主体性,实现显形教学与隐性教学的双重评价,为全面发展学生打下基础. (4)利用几何画板,通过计算机
13、技术,给学生提供一种验证猜想合理性的途径. (教学媒体设计) 课堂结构设计: 引入课题,提出猜想,实验探究,严谨证明,例题训练,课堂小结 教学过程设计 1、引入课题: 例:如图所示,一个斜坡的高为6m,斜坡的水平长度为8m,已知作用在物体上的力F与水平方向的夹角为60°,且大小为10N ,在力F的作用下物体沿斜坡运动了3m,求力F作用在物体上的功W. 解: W = = 30. 提问:1、解决问题需要求什么? 2、你能找到哪些与有关的条件? 3、能否利用这些条件求出?如果能,提出你的猜想. 4、怎样检验这些猜想是否正确? 【设计意图】生活实例引入,体现数学与实际生活的联系,也与物理(功
14、的定义)、哲学(透过现象看本质)等相关学科相联系,增强学生的应用意识,激发学生的学习热情,同时也让学生体会数学知识的产生、发展过程. 2、提出猜想: 从特殊情况去猜测公式的结构形式. 令 令 分析:可见,我们的公式的形式应该与均有关系?他们之间存在怎样的代数关系呢?请同学们根据下表中数据,相互交流讨论,提出你的猜想. 用具体值检验猜想的合理性. 令则= 三角函数 三角函数值 猜想: 【设计意图】鼓励学生发挥想象力,大胆猜测,然后再去验证其合理性,增强学生探索问题、挑战困难的勇气. 3、实验探究: 【设计意图】让学生用几何画板进行数学实验, 激起学生的好奇心和探究欲望, 使学生体会到数学的系统演
15、绎性和实验归纳性的两个侧面. 4、严谨证明: (利用向量) 前一章我们刚刚学习完向量,并用向量知识解决了相关的几何问题,这里,我们能否用向量知识来推导两角差的余弦公式呢?我们来仔细观察猜想的结构,我们在什么地方见到过类似结构?在向量部分,求角的余弦有什么方法吗? (学生:向量的数量积!) 证明:在平面直角坐标系xOy内作单位圆O,以Ox为始边作角,它们终边与单位圆O的交点分别为A、B,则: =, = = = (0) 思考:1、作为两向量的夹角,有没有限制条件? 2、如果不在0,这个区间内,我们的结论还会成立吗?怎样给出证明?(引导学生找到与夹角之间的关系) 【设计意图】让学生经历用向量知识解出
16、一个数学问题的过程,体会向量方法在数学探究过程中的简洁性。 思考:1、作为两向量的夹角,有没有限制条件? 2、如果不在0,这个区间内,我们的结论还会成立吗?怎样给出证明?(引导学生找到与夹角之间的关系) 推广完善:令为、的夹角, 则 无论哪种情况,都有 小结:两角差的余弦公式: (其中为任意角,简记为) 思考:请同学们仔细观察一下公式的结构,说说公式的结构有什么特点?应怎样记忆?(对学生的回答给予及时肯定) 【设计意图】引导学生关注两个向量的夹角与-的联系与区别,并通过观察和讨论,增强学生用数形结合、分类讨论的方法解决问题的意识,感受数学思维的严谨性. (介绍单位圆的三角函数线法) 除了以上的
17、证明方法,是否还有其它证法呢? 我们发现,这里涉及的是三角函数,是这个角的余弦问题,那我们还能不能考虑在单位圆里用三角函数线来推导呢? 请同学们课后自己在单位圆中画出、,并考虑如何用角的正弦线、余弦线来表示的余弦线? 这个问题作为课后思考题,请同学们课下相互讨论,共同探索。 【设计意图】根据教学实际,对教材进行适当安排,把单位圆三角函数线证法留作课后学生思考,为学生的课后探讨留有空间。 5、例题训练: 1、解决引例中的问题. 2、P127练习:已知,求. (运用公式时应根据角的范围,正确确定两角正、余弦值的范围) 公式的逆用:. 4、公式活用:. 【设计意图】例1让学生运用所学解决实际问题;例
18、2利用变式突破学生在运用公式过程中的易错点;例3对逆用公式解题加深认识;例4活用公式,加深学生对公式中两角形式变化的认识,强化整体思想。 6:课堂小结: 公式探索的一般步骤;公式的结构和功能;公式的运用应注意的问题。 7、作业: P127 练习1、2、3; . 【设计意图】让学生通过自己小结,反思学习过程,加深对公式的推导和应用过程的理解,促进知识的内化;然后用作业巩固本节课所学知识。 (附:板书设计) §3.1.1 两角差的余弦公式 一、公式 二、证明 引例: 例2: 例3: 4: 小结: 教学评价分析 诊断性评价: 1.按常规,学生很可能想到先探究两角和的正弦公式,怎样想到先研究
19、两角差的余弦公式是一个难点(但非重点),教学时可以直接提出研究两角差的余弦公式。但后面补充老教材的证明方法,让学生明白和与差内在的联系性与统一性,努力让学习过程自然。 2.尽管教材在前面的习题中,已经为用向量法证明两角差的余弦公式做了铺垫,多数学生仍难以想到.教师需要引导学生,联想到向量的数量积公式和单位圆上点的坐标特点,努力使数学思维显得自然、合理。 3.用向量的数量积公式证明两角差的余弦公式时,学生容易犯思维不严谨的错误,教学时需要引导学生搞清楚两角差与相应向量的夹角的联系与区别。 预期效果: 1、让学生在掌握两角差的余弦公式探究方法的基础上,能够自我总结形成公式探究的一般方法。 2、激发
20、学生的探究欲望,能够独立或合作提出推导其它三角恒等式的方案,形成对三角恒等变换的本质认识,加深对灵活运用公式的理解。 3、培养学生的“问题意识”,在探索的过程中学会将“知识问题化”,大胆、合理地提出猜测,通过证明、完善,最终达到将“问题知识化”的目的. 高一数学说课稿3 尊敬的各位评委、各位老师大家好!我说课的题目是函数的单调性,我将从四个方面来阐述我对这节课的设计。 一、教材分析 函数的单调性是函数的重要性质。从知识的网络结构上看,函数的单调性既是函数概念的延续和拓展,又是后续研究指数函数、对数函数、三角函数的单调性等内容的基础,在研究各种具体函数的性质和应用、解决各种问题中都有着广泛的应用
21、。函数单调性概念的建立过程中蕴涵诸多数学思想方法,对于进一步探索、研究函数的其他性质有很强的启发与示范作用。 根据函数单调性在整个教材内容中的地位与作用,本节课教学应实现如下教学目标: 知识与技能使学生理解函数单调性的概念,初步掌握判别函数单调性的方法; 过程与方法引导学生通过观察、归纳、抽象、概括,自主建构单调增函数、单调减函数等概念;能运用函数单调性概念解决简单的问题;使学生领会数形结合的数学思想方法,培养学生发现问题、分析问题、解决问题的能力。 情感态度与价值观在函数单调性的学习过程中,使学生体验数学的科学价值和应用价值,培养学生善于观察、勇于探索的良好习惯和严谨的科学态度。 根据上述教
22、学目标,本节课的教学重点是函数单调性的概念形成和初步运用。虽然高一学生已经有一定的抽象思维能力,但函数单调性概念对他们来说还是比较抽象的。因此,本节课的学习难点是函数单调性的概念形成。 二、教法学法 为了实现本节课的教学目标,在教法上我采取了: 1、通过学生熟悉的实际生活问题引入课题,为概念学习创设情境,拉近数学与现实的距离,激发学生求知欲,调动学生主体参与的积极性。 2、在形成概念的过程中,紧扣概念中的关键语句,通过学生的主体参与,正确地形成概念。 3、在鼓励学生主体参与的同时,不可忽视教师的主导作用,要教会学生清晰的思维、严谨的推理,并顺利地完成书面表达。 在学法上我重视了: 1、让学生利
23、用图形直观启迪思维,并通过正、反例的构造,来完成从感性认识到理性思维的质的飞跃。 2、让学生从问题中质疑、尝试、归纳、总结、运用,培养学生发现问题、研究问题和分析解决问题的能力。 三、教学过程 函数单调性的概念产生和形成是本节课的难点,为了突破这一难点,在教学设计上采用了下列四个环节。 (一)创设情境,提出问题 (问题情境)(播放中央电视台天气预报的音乐)。如图为某地区20xx年元旦这一天24小时内的气温变化图,观察这张气温变化图: 高一数学说课稿4 本节课是高中数学第二册第七章曲线和圆的方程第五节曲线和方程,这是一节教学研讨课,是在大力提倡改革课堂教学模式、提高课堂效益、开发学生智力等多方面
24、能力的前提下开设的,目的是努力寻求一种全新的课堂教学模式,能够让信息技术和数学课本知识有效的融合在一起,让学生知道,学习数学,不仅仅是做题目,而且是研究题目,提高了学生的学习数学的兴趣。 一、教材分析 平面动点的轨迹这部分内容从理论上揭示了几何中的“形”与代数中的“数”相统一的关系,为“作形判数”与“就数论形”的相互转化开辟了途径,同时也体现解析几何的基本思想。轨迹问题具有深厚的生活背景,求平面动点的轨迹方程涉及集合、方程、三角平面几何等基础知识,其中渗透着运动与变化、数形结合的等思想,是中学数学的重要内容,也是历年高考数学考查的重点之一。 二、对数学目标的阐述 “以知识为载体,注重学生的能力
25、、良好的意志品质及合作学习精神的培养”是本教学设计中贯穿始终的一个重要教学理念。为此本课的知识目标设定为三条: (1)了解解析几何的基本思想、明确它所研究的基本问题 (2)了解用坐标法研究几何问题的有关知识和观点 (3)初步掌握根据已知条件求曲线方程的方法,同时进一步加深理解“曲线的方程、方程的曲线”的概念。 三、对学生能力目标的培养 本节课的设计着眼点是让学生集体参与、主动参与,培养学生动手、动脑的能力,鼓励多向思维、积极活动、勇于探索。知识的学习和能力的提高是同步的,从本课的设计不难看出对学生能力目标是:通过自我思考、同桌交流、师生互议、实际探究等课堂活动,获取知识。同时,培养学生探究学习
26、、合作学习的意识,强化数形结合、化归与转化等数学思想,提高分析问题、解决问题的能力。 四、对学生个性品质和情感教育的培养 设计者试图利用动画演示轨迹的形成过程,使课堂气氛活跃,让学生感受动点轨迹的动态美,使课堂教学内容形象化,从而激发学生学习数学的兴趣和学好教学的信心。而鼓励学生积极思考、勇于探索,培养学生良好的意志品质,树立竞争意识与合作精神,感受合作交流带来的成功感,树立自信心,激发提出问题和解决问题的勇气则是本节课要达成的个性品质和情感目标。 五、关于教学方法与教学法手段的选用 新课程强调教师要调整自己的角色,改变传统的教育方式,教师要由传统意义上知识的传授者和学生的管理者,改变成为以学
27、生为中心,让学生真正成为学习的主人而不是知识的奴隶,基于此,根据本节课的教学内容和学生的实际水平,采用的是引导发现法和计算机软件几何画板实验辅助教学。 六、关于教学程序的设计 1、创设情景,引入课题 平面解析几何的核心是“坐标法”,用代数的方法研究几何图的性质。主要包括两个部分:求曲线的方程;通过研究方程研究曲线的性质。在传统的教学中,动点并不动。几何画板的特点是“动”。可以在动态中观察数学现象,探究几何图形的性质。在几何画板支持下,“动点”真的动起来了。在动态中观察,观察变动中不变的规律触及到问题的本质,可以更好地让学生参与到教学过程中来。让学生动手操作,发现数学规律。 例 1、已知点P是圆
28、上的一个动点,点A是X轴上的定点,坐标是(12、0)当点P在圆上运动时,线段PA的中点M的轨迹是什么? 第一步:让学生借助画板动手探究轨迹 第二步:要求学生求出轨迹方程、验证轨迹 解法一:设M(x,y)则,由点p是圆上的点得,化简得: 2、问题提出,引入新课 例2、已知B是定圆A内一定点,C是圆上的动点,L是线段BC的垂直平分线。交点为P,M为L与直径CD的交点,当点C在圆上运动时,探索直线L上哪个点的运行时椭圆? 设计意图:借助数学实验,把原本属于教师行为的设疑激趣还原于学生,让学生自己在实践过程中发现疑问,更容易激发学生学习的热情,促使他们主动发现、主动学习。 第一步:分解动作,向学生提出
29、几个问题: 问题1:当点C在圆上运动时,直线 围成一个椭圆,上哪个点在这个椭圆上?(为什么)注意观察点P与点M 问题2:CD是圆A的直径,直线L与CD交于M,求M的轨迹方程。 问题3、改变点B的位置,当点B在圆外时,你的结论该做怎样的修改呢? 学生活动:第一步:利用网络平台展示学生得到的轨迹(教师有意识的整合在一起) 第二步:课堂完成学生归纳出来的问题1,问题2和3课后完成。 整个教学过程,体现了四个统一:既学习书本知识与投身实践的统一、书本学习与现代信息技术学习的统一、书本知识与资源拓展的统一、课堂学习与课外实践的统一。本节课学生精神饱满、兴趣浓厚、合作积极,与教师保持良好的互动,还不时产生
30、一些争执,给我提出了一些新的问题,折射出我不足的方面,促进了我的进步与提高,师生间的教与学就像一面镜子,互相折射,共同进步。 通过本节课的学习,学生不仅掌握了动点轨迹的求法,而且通过作图掌握了几何画板这个软件,通过方程的推导,更加熟悉了动点轨迹的求法,而且通过作图掌握了几何的基本思想“以数论形,数形结合”,提高了运用数形结合、等价转化等数学思想方法解决问题的能力,通过思路的探索和轨迹方程的推导,学生的思维品质得以优化,学会辩证地看待问题,享受了数学的美。 高一数学说课稿5 一、说教材 1、教材的地位和作用 集合的概念是人教版第一章的内容(中职数学)。本节课的主要内容:集合以及集合有关的概念,元
31、素与集合间的关系。初中数学课本中已现了一些数和点的集合,如:自然数的集合、有理数的集合、不等式解的集合等,但学生并不清楚“集合”在数学中的含义,集合是一个基础性的概念,也是也是中职数学的开篇,是我们后续学习的重要工具,如:用集合的语言表示函数的定义域、值域、方程与不等式的解集,曲线上点的集合等。通过本章节的学习,能让学生领会到数学语言的简洁和准确性,帮助学生学会用集合的语言描述客观,发展学生运用数学语言交流的能力。 2、 教学目标 (1)知识目标: a、通过实例了解集合的含义,理解集合以及有关概念; b、初步体会元素与集合的“属于”关系,掌握元素与集合关系的表示方法。 (2)能力目标: a、让
32、学生感知数学知识与实际生活得密切联系,培养学生解决实际的能力; b、学会借助实例分析,探究数学问题,发展学生的观察归纳能力。 (3)情感目标: a、通过联系生活,提高学生学习数学的积极性,形成积极的学习态度; b、通过主动探究,合作交流,感受探索的乐趣和成功的体验,体会数学的理性和严谨。 3、重点和难点 重点:集合的概念,元素与集合的关系。 难点:准确理解集合的概念。 二、学情分析(说学情) 对于中职生来说,学生的数学基础相对薄弱,他们还没具备一定的观察、分析理解、解决实际问题的能力,在运算能力、思维能力等方面参差不齐,学生学好数学的自信心不强,学习积极性不高,有厌学情绪。 三、说教法 针对学
33、生的实际情况,采用探究式教学法进行教学。首先从学生较熟悉的实例出发,提高学生的注意力和激发学生的学习兴趣。在创设情境认知策略上给予适当的点拨和引导,引导学生主动思、交流、讨论,提出问题。在此基础上教师层层深入,启发学生积极思维,逐步提升学生的数学学习能力。集合概念的形成遵循由感性到理性,由具体到抽象,便于学生的理解和掌握。 四、学习指导(说学法) 教学的矛盾主要方面是学生的学,学是中心,会学是目的,因此在教学中要不断指导学生学会学习。根据数学的特点这节课主要是教学生动脑思考、多训练、勤钻研的研讨,这样做增加了学生主动参与的机会,增强了参与的意识,教学生获取知识的途径,思考问题的方法,使学生成为
34、教学的主体,进而才能达到预期的教学目的和效果。 五、教学过程 1、引入新课: a、创设情境,揭示本课主题,同时对集合的整体性有个初步的感性认识。 b、介绍集合论的创始者康托尔 2、究竟什么是集合?(实例探究)切合学生现有的认知水平, 以学生熟悉的事物(物体),以实际生活为背景进行探究, 为本课教学创造出一种自然和谐的氛围,充分调动学生的学习热情接待探究过程学生积极思考、交流、作答,教师针对学生的回答启发,引导学生寻找实例中的共同特征,培养学生观察,总结能力范围由具体到抽象,由感性到理性,为下面水到渠成的介绍集合概念做好铺垫。 3、集合的概念,本课的重点。结合探究中的实例,让学生说出集合和元素各
35、是什么?知识的呈现由抽象到具体进一步熟悉元素与集合的概念,让学生分清实际问题中的集合和元素为后面学习两者间的关系做好铺垫。 教师在这一环节做好学习指导,确定的对象组成的整体叫集合,如果对象不确定,就不能确定为集合(举例)加深对概念的理解。 4、 熟悉巩固集合的概念通过例题,练习、帮助学生进一步熟悉和理解集合的概念。 5、集合的符号记法,为本节重点做好铺垫。 6、从实例入行手,探索元素和集合的关系,学生能用文字语言描述,如何用数学语言描述,给出元素与集合关系符号表示,在这个环节教师适当引导学生积极主动参与到知识逐步形成过程,便于学生理解和掌握,落实本课的重点,学习指导:集合元素的确定。理解两符号
36、的含义。 7、 思考交流本课的重要环节在课堂上给学生提供充分的活动时间和空间。通过自由举例,能深化概念。同时还能提升学生的分析能力表达自己见解的能力。 8、 从所举的例子中抽象出数集的概念,并给出常见数集的记法。 9、 学生练习:通过练习,识记常见数集的记法,同时进一步巩固元素与集合间的关系。 10、知识的实际应用: 问题不难,落实课本能力目标,培养学生运用数学的意识和能力初步培养学生应用集合的眼光观看世界。 11、课堂小节 以学生小节为主教师帮助为辅,巩固所学知识,帮助学生认识到要学会梳理所学内容,要学会总结反思,使学生的认识进一步升华,培养学生的鬼纳总结能力。 六、评价 教学评价的及时能有
37、效调动课堂气氛,感染学生的情绪,对课堂教学发挥着积极作用,教学过程遵重学生之间的差异培养学生应用集合的眼光看研究对象,注重过程评价与多元评价将教学评价贯穿于本堂课的每个教学环节。 七、教学反思 1、 通过现实生活中的实例,从特殊到一般,在具体感知基础上得出集合的描述概念,便于学生理解接受。 2、 启发探究教学,营造学生的学习氛围,培养学生自主学习,合作交流的能力。 高一数学说课稿6 一、教材分析 1、教材的地位和作用: 数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。一方面,数列作为一种特殊的函数与函数思想密不可分;另一方面,学习数列也为进一步学习数列的极限等内容
38、做好准备。而等差数列是在学生学习了数列的有关概念和给出数列的两种方法通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。同时等差数列也为今后学习等比数列提供了学习对比的依据。 2、教学目标 根据教学大纲的要求和学生的实际水平,确定了本次课的教学目标 a在知识上:理解并掌握等差数列的概念;了解等差数列的通项公式的推导过程及思想;初步引入“数学建模”的思想方法并能运用。 b在能力上:培养学生观察、分析、归纳、推理的能力;在领会函数与数列关系的前提下,把研究函数的方法迁移来研究数列,培养学生的知识、方法迁移能力;通过阶梯性练习,提高学生分析问题和解决问题的能力。 c在情感上:通过对等差数列的研
39、究,培养学生主动探索、勇于发现的求知精神;养成细心观察、认真分析、善于总结的良好思维习惯。 3、教学重点和难点 根据教学大纲的要求我确定本节课的教学重点为:等差数列的概念。等差数列的通项公式的推导过程及应用。 由于学生第一次接触不完全归纳法,对此并不熟悉因此用不完全归纳法推导等差数列的同项公式是这节课的一个难点。同时,学生对“数学建模”的思想方法较为陌生,因此用数学思想解决实际问题是本节课的另一个难点。 二、学情教法分析: 对于三中的高一学生,知识经验已较为丰富,他们的智力发展已到了形式运演阶段,具备了教强的抽象思维能力和演绎推理能力,所以我在授课时注重引导、启发、研究和探讨以符合这类学生的心
40、理发展特点,从而促进思维能力的进一步发展。 针对高中生这一思维特点和心理特征,本节课我采用启发式、讨论式以及讲练结合的教学方法,通过问题激发学生求知欲,使学生主动参与数学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题。 三、学法指导: 在引导分析时,留出学生的思考空间,让学生去联想、探索,同时鼓励学生大胆质疑,围绕中心各抒己见,把思路方法和需要解决的问题弄清。 四、教学程序 本节课的教学过程由(一)复习引入(二)新课探究(三)应用举例(四)反馈练习(五)归纳小结(六)布置作业,六个教学环节构成。 (一)复习引入: 1.从函数观点看,数列可看作是定义域为_对应的一列函数
41、值,从而数列的通项公式也就是相应函数的_。(N;解析式) 通过练习1复习上节内容,为本节课用函数思想研究数列问题作准备。 2.小明目前会100个单词,他她打算从今天起不再背单词了,结果不知不觉地每天忘掉2个单词,那么在今后的五天内他的单词量逐日依次递减为:100,98,96,94,92 . 3. 小芳只会5个单词,他决定从今天起每天背记10个单词,那么在今后的五天内他的单词量逐日依次递增为5,10,15,20,25 . 通过练习2和3引出两个具体的等差数列,初步认识等差数列的特征,为后面的概念学习建立基础,为学习新知识创设问题情站境,激发学生的求知欲。由学生观察两个数列特点,引出等差数列的概念
42、,对问题的总结又培养学生由具体到抽象、由特殊到一般的认知能力。 (二) 新课探究 1、由引入自然的给出等差数列的概念: 如果一个数列,从第二项开始它的每一项与前一项之差都等于同一常数,这个数列就叫等差数列。这个常数叫做等差数列的公差,通常用字母d来表示。强调: “从第二项起”满足条件;公差d一定是由后项减前项所得;每一项与它的前一项的差必须是同一个常数(强调“同一个常数” )。 在理解概念的基础上,由学生将等差数列的文字语言转化为数学语言,归纳出数学表达式:an+1-an=d (n1)同时为了配合概念的理解,我找了5组数列,由学生判断是否为等差数列,是等差数列的找出公差。 1. 9 ,8,7,
43、6,5,4,; d=-1 2. 0.70,0.71,0.72,0.73,0.74; d=0.01 3. 0,0,0,0,0,0,.; d=0 4. 1,2,3,2,3,4,;× 5. 1,0,1,0,1,× 其中第一个数列公差0,第三个数列公差=0 由此强调:公差可以是正数、负数,也可以是0 高一数学说课稿7 一、教学背景 1、教材分析 对数函数及其性质是人教版普通高中课程数学必修1第二章第二节第二部分内容,对数函数是一类特殊的函数,在实际生产过程中运用很广泛。同时,通过对对数函数及其图象和性质的研究,既可以从具体的感性认识上来对函数的图象和性质更好的理解,也可为以后研究幂
44、函数、三角函数等其它函数的图象和性质起示范和铺垫作用。 2、学情分析 刚入高一的学生,仍保留着初中生许多学习特点,能力发展正处于形象思维向抽象思维转折阶段,但更注重形象思维。由于函数概念十分抽象,对数函数又以对数运算为基础,同时,初中函数教学要求降低,导致初中生运算能力有所下降,这双重问题增加了对数函数教学的难度。但在此之前,学生已经学习了指数函数及其性质,学生已经初步对新函数的研究方法有所了解,为本节的学习奠定了基础。 基于以上分析,我制定如下教学目标及重、难点: 3、教学目标 知识与技能: 初步掌握对数函数的概念、图象及性质,并应用性质解决简单数学问题。 过程与方法: 经历对数函数性质的探
45、索过程,体会函数思想、分类讨论思想和转化思想在解决具体问题中的应用。 情感态度与价值观: 培养勇于探索的精神,培养学生的成功意识,合作交流的学习方式,激发学生学习数学、应用数学的兴趣。 4、教学重、难点 重点:理解对数函数的概念,掌握对数函数的图象及性质。 难点:由图象探究函数性质,应用性质解决具体问题。 二、教学方法及手段 1、教法 根据建构主义的学习理论和新课程标准理念,本节课以自主探究法和讲解法为主,以练习法为辅,引导学生自己观察、归纳、分析,培养学生采用自主探究的方法进行学习,使学生体会学习的乐趣。 2、学法 (1)类比学习:通过指数函数类比学习对数函数。 (2)小组合作学习:将学生分
46、成7个小组,通过小组内讨论交流,归纳得出对数函数的图象和性质。 3、教学手段 采用多媒体辅助教学。 三、教学教程 1、情境引入 通过银行的复利计算问题,逐步引出对数函数。 设计意图:情景来源于生活,通过生活中的实例来反应对数函数的重要性,目的在于激发学生学习的兴趣,让每一个学生都主动融入到学习中。 2、新知探索 通过上述模型,让学生给对数函数下定义。 学生用描点法画和的图象,教师再借助于计算机再画几个对数函数的图象,让学生观察并总结出一般情况。 以“你们能根据图象归纳出对数函数的性质吗?”设问,引导学生能过图象的特征得出对应的性质。 例比较下列各组数中两个值的大小: (1)log23.4和lo
47、g28.5; (2) log0.33.4和log0.38.5; (3) loga3.4和loga8.5(a>0,且a1); (4) log23.4和log3.42; (5) log3.42和log0.38.5。 3、巩固练习 (1)比较大小: lg6_lg8;ln1.3_ (2)比较正数m,n的大小: 若,则m_n;若,则m_n. 4、总结提炼 (1)自主探究新知识的方法; (2)本节课应用了哪些数学思想。 5、布置作业 (1)阅读教材P70P72,梳理对数函数的概念、图象、性质等知识点; (2)教材P747、8 四、板书设计 2.2.2对数函数及其性质 一、概念例题 二、图象 三、性质
48、 四、教学反思 高一数学说课稿8 一、教材分析 1、教材的地位与作用 模拟方法是北师大版必修3第三章概率第3节,也是必修3最后一节,本节内容是在学习了古典概型的基础上,用模拟方法估计一些用古典概型解决不了的实际问题的概率,使学生初步体会几何概型的意义;而模拟试验是培养学生动手能力、小组合作能力、和试验分析能力的好素材。 2、教学重点与难点 教学重点:借助模拟方法来估计某些事件发生的概率; 几何概型的概念及应用 体会随机模拟中的统计思想:用样本估计总体。 教学难点:设计和操作一些模拟试验,对从试验中得出的数据进行统计、分析; 应用随机数解决各种实际问题。 二、教学目标: 1、知识目标:使学生了解
49、模拟方法估计概率的实际应用,初步体会几何概型的意义;并能够运用模拟方法估计概率。 2、能力目标:培养学生实践能力、协调能力、创新意识和处理数据能力以及应用数学意识。 3、情感目标:鼓励学生动手试验,探索、发现规律并解决实际问题,激发学生学习的兴趣。 三、过程分析 1、创设良好的学习情境,激发学生学习的欲望 从学生的生活经验和已有知识背景出发,提出用学过知识不能解决的问题:房间的纱窗破了一个小洞,随机向纱窗投一粒小石子,估计小石子从小洞穿过的概率。能用古典概型解决吗?为什么?从而引起认知矛盾,激发学生学习、探究的兴趣。 2、以实验和问题引导学习活动,使学生经历“数学化”、“再创造”的过程 通过两个实验:(1)取一个矩形,在面积为四分之一的部分画上阴影,随机地向矩形中撒一把豆子(我们数100粒),统计落在阴影内的豆子数与落在矩形内的总豆子数,观察它们有怎样的比例关系?(2)反过来,取一个已知长和宽的矩形,随机地向矩形中撒一把豆子,统计落在阴影内的豆子数与落在矩形内的总豆子数,你能根据豆子数得到什么结论? 让学生分组合作,利用课前准备的材料进行试验、讨论、分析,使学生主动进入探究状态,充分调动
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 立春营销新机遇
- 考点攻克人教版八年级物理上册第4章光现象章节测评试题(含答案解析版)
- 强化训练苏科版八年级物理上册《光现象》章节练习试卷(含答案解析)
- 2025年高三生物高频考点回顾卷一
- 2025年高二生物下学期针灸机理研究题
- 2025年高二生物下学期数据图表绘制题
- 考点攻克人教版八年级上册物理物态变化《熔化和凝固》定向测试试卷(附答案详解)
- 2025年高二(下)生物微生物可持续化题
- 2025年高二(下)生物归纳与演绎推理测试
- 汉中市中医医院招聘考试真题2024
- 严重过敏反应急救指南解读
- DB44-T 2255-2025 海岸线价值评估技术规范
- 牙克石市矿产资源开发环境承载力评价报告
- 2025-2030中国体外膜氧合装置行业市场现状供需分析及投资评估规划分析研究报告
- 《5G技术的关键应用》课件
- 《先进的CAE仿真技术》课件
- 富血小板血浆治疗护理
- 动力柜施工方案
- 2025年食品安全知识竞赛考试题库(含答案)
- 2025年注安道路运输安全实务真题卷(附解析)
- 玻璃体切除术护理
评论
0/150
提交评论