




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、全国各地市2020年模拟试题分类解析汇编:数列【山东省日照市 2020届高三 12月月考文】(12)若数列1 1an满足 d n N ,d为常数,则称数列 an为“调和数列”.已知正项数列 an 1 a nb2b90 ,则b4 b6的最大值是1,一,,为“调和数列” bnA.10【答案】BB.100C.200D.400【解析】已知得bn等差数列,且b4 b620,又bn>0,所以b4 b6b4 b62100.【2020三明市普通高中高三上学期联考文】设等差数列an的前n项和为Sn,a2、a4是方程x2 x 2 0的两个根,S5A. -B.5 C.-D-52 2【答案】A【解析】a2、a4
2、是方程x2x 20的两个根,a2 +a4 = 1,S-a5)5 522【2020黄冈市高三上学期期末考试文】已知等比数列an的公比q=2,其前4项和S4 60,3 a2等于()A. 8B. 6C. -8D. -6【答案】A【解析】本题主要考查等比数列及其前n项的和公式.属于基础知识、基本运算的考查.a1(1 q4)S4 60, q 2-60a1 151 q【山东实验中学 2020届高三一次诊断文】14.已知数列为等比数列,且.q二4Mli=值,则=.【答案】16 【解析】解:Q as 4, ag 64,Qan是等比数列,a5ga9 =a72=256又Q a5, a7, a9符号相同,所以a7
3、=16【山东实验中学 2020届高三一次诊断文】3,设义为等差数列的前项和,已知卜 */+=6 ,那么,斗=A:2B. 8C. 18D. 36【答案】C【解析】解:因为设等差数列的公差为d,则由a a3 an 6可得 3ai+12d 6, &+4d 2 asQ Sg (a1 ag) 9 9a5 9 2 18因此答案为C【山东实验中学 2020届高三第一次诊断性考试理】4.已知an为等差数列,其公差为-2 ,且a7是a3与a9的等比中项,Sn为an的前n项和,nC N*,则&。的值为()(A). -110(B). -90(C). 90(D). 110【答案】D【解析】解:a7是a
4、3与a9的等比中项,公差为-2 ,所以a72=a3?a9,所以a72= (a?+8) (a7-4),所以a7=8,所以a1=20,所以 S10= 10 X 20+10X9/2 X (-2)=110 。故选 D【山东省微山一中 2020届高三10月月考理】3.已知Sn为等差数列an的前n项的和,a2 a5 4, S7 21,则 a7的值为()A. 6 B. 7 C . 8 D . 9【答案】D【解析】 由条件a2 a5 4, S7 21可转化为2al 5d 4, a13d 3,解得:a13,d 2, a73 6 2 9,这里考查等差数列通项公式与求和公式以及解方程组.【2020江西师大附中高三下
5、学期开学考卷文】已知an为等差数列,且a72a4 = 1, a3=0,则公差d =()A. - 2B. - -C. -D. 22 2a11【解析】本题主要考查等差数列的通项公式.属于基础知识、基本运算的考查A 6d 2(a1 3d)a7 2 a4 = 1, a3 = 0,得 a12d 0【2020年石家庄市高中毕业班教学质检1文】已知各项均为正数的等比数列 an ,a1 , ag=16,贝U a2 , a§ , % 的值A . 16 B . 32 C . 48 D . 64【解析】本题主要考查集合的等比数列及其通项公式的基本运算.属于基础知识、基本运算a54的考查.等比数列an, a
6、1 - ag = a2 - a8 = a52=16,各项均为正数则,3 3_-1a2a5a8= a5464 即a2a5 a8 的值为 64.【2020厦门期末质检理 5】在等差数列an等an>0,且ada2+ 。=30,则a5 a6的最大值等于A. 3B. 6C.9D. 36【解析】等差数列的性质:项数和相等,则项的和也相等,所以由a + a2+ a10=30得30a5 a6 6,由基本不等式信 a5 a6 9,选C;51 一 一一【2020粤西北九校联考理13在数列an中,a1 - , Sn为数列an的前项和且3Sn n(2n 1)an,则 S0;【答案】Sn 2n 1【解析】因为Sn
7、 n(2n 1)an,Sn 1 (n 1)(2n 3)an 1(n 2),两式相减得_1_n(2n 1)an (2n 3同 1,(n 2),求得 小 54n2 1 2n 1【2020宁德质检理21设Sn为等差数列an的前n项和,若a2 1,a4 5,则S5等于( )A. 7B. 15C. 30D. 31【解析】由等差数列通项公式得: 5 1 2d,d 2,a11,S5 15【2020浙江宁波市期末文】设等比数列an的前n项和为Sn,若a2oii3s2010 2012,a20103s2009 2012,则公比 q(A) 4(B)1 或 4(C)(D)【解析】由a20113s20102012a20
8、103s20092012相减得a2011a20103a2010即q 4。【2020安徽省合肥市质检文】已知数列an满足a1,anann /2 (nN ),则 a10 =A. 64B. 32C. 16D. 8【解析】由题an 1 an 2an 2 an 1an 2 n 12 ,故为a11a102532,选 B。【2020山东青岛市期末文】对于正项数列an,定义Hna1 2a2n3a3为 nanan的“光阴”值,现知某数列的“光阴”值为Hnan2n 12n由Hna12 a2 3a3可得 nann n(n 2)a1 2a2 3a3nan 1 一;一,H n2a1 2a2 3a3(n 1)an 1(n
9、 1)(n 1)2an的通项公式一得nann(n 2)2(n 1)(n 1)22n 12n 12n0且a6 |a5 |, Sn是数列的前n【2020江西南昌市调研文】等差数列an中,a5 0,a6项的和,则下列正确的是()A.Sl,S2,S3均小于0, S 4,S5,S6均大于0 B. S1,S2,与土匀小于0 , S 6,S7均大于0C.Si,S2,S9均小于0 , S 10,S11均大于0 D.S 1,S2,S11均小于0 ,S 12,S13均大于0【答案】C【解析】由题可知a6 a50 ,故So (a1,0)10(a5 %)10 0 ,而22c (a a) 9 2a5 9巴_巴_ _ 9
10、a§ 0 故选q 22【2020广东佛山市质检文】等差数列 an中,d 2 ,且为,%e4成等比数列,则 a2( )A.4B ,6C ,8D .10【答案】B【解析】由题a32 a1 a,,d 2,即 2)2 2) 4),解得a26,选B。【2020北京海淀区期末文】 已知数列an满足:a1 1, an 0, a; 1 a; 1(n N*),那么使an 5成立的n的最大值为()(A) 4(B) 5(C) 24(D) 25【答案】C222【解析】由a1 1, an 0, an 1 an 1(n N*)可得an = n,即an = Vn ,要使 an 5 则 n 25 ,选 C。【202
11、0广东韶关市调研文】设数列an是等差数列,a1a2a324,a1926,则此数列an前20项和等于()A. 160 B . 180 C . 200 D . 220【答案】B【解析】因数列an是等差数列,所以a1a2a33a224,即a28,从而d %0 20 曳9 20 180,选 B。221【2020韶关第一次倜研理 5】已知等比数列 an中,各项都是正数,且 a1,一a3,2a2成等差 2数列,则a8 a9等于() a6 a7A . 1 72B. 1 短 C. 3 2/2D. 3 2/2【答案】C1 o1 2 2【斛析】 因为a1,-a3,2a2成等差数列,所以a3 a1 2a2,q1 2
12、q,q ,2 2J9=q23 2.2a6 a7【2020海南嘉积中学期末理4】等差数列 an的通项公式为an = 2n + 1 ,其前n项和为8n ,则数列SL的前10项和为()nA、70 B 、75 C 、100D、120【答案】B【解析】因为等差数列an的通项公式为2口=2门+1,所以8口n2 2n,所以员 n 2,n3 4 5 . 12 75【2020黑龙江绥化市一模理5】已知数列 an,若点(n, an)( n N* )在经过点(5,3)的定直ll上,则数列an的前9项和S9=()A. 9B. 10C. 18D.27【答案】D【解析】点(n,an)( n N*)在经过点(5,3)的定直
13、11上,a53,根据等差数列性质得:S99 a5=2711 C【2020泉州四校二次联考理6】已知数列an满足a1 1,且an 1 an 1 (1)n(n 2,且33_ * . n N ),则数列 an的通项公式为()-3n _n 2 一.nA. an B . an C. an n 2 D . an(n 2)3n 23n11 n*.nn 1【解析】由 an 1an1 (1)n(n 2 且 n N )得,3nan3 a- 1 ,331 2- 2n 23 an 1 3 an 2 1,3 a2 3ai 1 ,相加信 3 an n 2 , Hn n- 3n【2020泉州四校一次联考理9】满足a1 1,
14、log2an1log 2 an 1(n N),它的前n项和为Sn,则满足Sn 1025的最小n值是()A. 9 B . 10C. 11D. 12【答案】C*n 1【解析】因为 a1 1,log2an1 10g2 an 1(n N ) 所以 an 1 2an an 2Sn 2n 1则满足Sn 1025的最小n值是11 ;【2020延吉市质检理7】等差数列an中,旦是一个与n无关的常数,则该常数的可能 a2 n值的集合为()A.B.C.D.叼1等差数列anan中,一a2na (n 1)da1(2n 1)d与n无关的常数,所以10, m -;220 a6,则 S8等a1(n 1)d ma1 m(2n
15、 1)d n 恒成立,所以 d 0, m 1; d【2020深圳中学期末理111已知等差数列 an的前n项和为Sn .若a3【答案】80【解析】因为a3 20 a6,所以s8 4(a3 a6) 4 20 80。【2020黄冈市高三上学期期末考试文】若Sn是等差数列an的前n项和,且& S3 10,则S11的值为【答案】22【解析】 本题主要考查等差数列及其前n项和公式.属于基础知识、基本运算的考查.S8S3108( a1%)3(a1a3)105al8a83a3202210al 50d 20 a1 5d 2 a6 211(aina6 222【2020厦门市高三上学期期末质检文】已知数列a
16、n为等差数列,且a1+a6+a11=3,则a3+ a9=。【答案】2【解析】本题主要考查等差数列的通项公式、等差中项.属于基础知识、基本运算的考查.,数列 an 为等差数列,a1 + a11 = 2a6,3a6=3 得 a6=1a 3+a9 = 2a6= 2【2020金华十校高三上学期期末联考文】已知an是公差为d的等差数列,若3a6 a3 a4a§ 12,则 d =°【答案】2【解析】本题主要考查等差数列的通项公式.属于基础知识、基本运算的考查.3a6a3a4a5123(a15d) a12da13da14d 12 6d 12d 2【2020金华十校高三上学期期末联考文】已
17、知各项均不相等的等差数列an的前四项和为14,且a1,a3,a7恰为等比数列bn的前三项。(1)分别求数列an, bn的前n项和Sn,Tn;(2)记为数列anbn的前n项和为Kn,设Cn 组,求证:Cn 1 Cn(n N).Kn【解析】本题主要考查等差数列、等比数列及不等式等基础知识,考查运算求解能力及应用意识.:20.解(I)设公差为团则*"墨:“. 解得声1或HR(含去),幽=2川.3分(鼻 + 2(/)* -/(乌 + 6d)所以飙 =/】,X. = "3;,)§分 62不7;产产L?-7分1U)四£ = 2,才+ 3昼+十(样中1)70故 2K
18、=2-23 2J + *用?+加 +>2”®-SW = 2*21 + 2J + 2? +- +2"-(n + |).r .A Kn -n 2<H ”分*&r*1SW-i) sw叫片十2JL,= 工二一3 A 0所以加小冰七心 分【2020年西安市高三年级第一次质检文】已知等差数列1*中,ai=1,a3=- 3.(I)求数列 入 的通项公式;(II)若数列 口的前众项和为-35,求k的值.【解析】16本小题满分12分)解乂 I )设等基数列垢的公差为,贝!I+加一 E由5 = IG = 3可得1+2d =.<解得1二一2从而,4= 1 + (/ _
19、Dx 1_ 2) = 3 _ % (6分)(H )由(1)可知 aKy - 2Na所以 £ = "”+(了 2砌 f idfa>进而由£ = 一 35可得2A 总- 35,即月一 2k 一 35,0,解得 * = 7或八一 5.又住M.故上7为所求.(12分)【2020唐山市高三上学期期末统一考试文】 在等差数列an中,a2a37冏 a5 a6 18.1S3n(1)求数列an的通项公式;11(2)设数列an的刖n项和为Sn,求一LS3 S6【解析】题主要考查等差数列的概念、通项公式,考查运算求解能力及裂项求和的数学方法解:(I)设等差数列an的公差为d,依题
20、意,ai+ d+ ai+ 2d= 7,ai + 3d + ai + 4d + ai + 5d =18, - an= 2+ (n 1) x 1 = n+ 1.(n )S3n =1= 2_L).83n 9n(n +1)9 n n+1£+*+ + 4/1-?)+.9 分1- ) + + (- ) = Q/,1 .3n n+19(n +1)12分【2020年石家庄市高中毕业班教学质检1文】 已知等差数列an, Sn为其前n项的和,*a2 =0, a5=6, nCN .(I) 求数列 an的通项公式;(II)若bn=3an,求数歹U bn的前n项的和.【解析】 本题主要考查了等差数列的通项公式
21、、等差数列的前n项和数列的综合应用.。考查了基础知识、基本运算、基本变换能力- &依题意ad 0,4d 6.解得2,2.(D)bn 1bn2n(I)可知2n 4bn3,9,所以数列1bn是首项为1 ,公比为9的等比数列,99n)1(9n721).所以数列bn1 一的前n项的和(9n 1).7210分3n(a 1+ a3n)3n(2+3n + 1) 9n(n + 1)【2020厦门市高三上学期期末质检文】某软件公司新开发一款学习软件,该软件把学科知识设计为由易到难共 12关的闯关游戏.为了激发闯关热情,每闯过一关都奖励若干慧币(一种网络虚拟币).该软件提供了三种奖励方案:第一种,每闯过一
22、关奖励40慧币;第二种,闯过第一关奖励4慧币,以后每一关比前一关多奖励4慧币;第三种,闯过第一关奖励 0.5慧币,以后每一关比前一关奖励翻一番(即增加 1倍),游 戏规定:闯关者须于闯关前任选一种奖励方案.(I)设闯过n ( n N,且nW 关后三种奖励方案获得的慧币依次为An, B, C,试求出A, B, G的表达式;(n)如果你是一名闯关者,为了得到更多的慧币,你应如何选择奖励方案?【解析】本题主要考查等差数列、等比数列及不等式等基础知识,考查运算求解能力及应用 意识,考查方程与函数、分类讨论与整合等思想方法( D第1种奖励方案卿过鲁美所簿稣币构成常数列4 =如门,-2分如二种奖励方案闯过
23、着关所得通市构成营货是%公差也为4的等差数列,,n或/T -1) 4 r 工.人1. 6. B 4网 +4 = 2再 +.一“一一 力第三种奖风方案地过各关所树蕙币捋成首*是0.5 .公比为2的等比数列. 如?)1:* C.=金一工 一 =7) .6 分1-22号4nA瓦.即取hi>2/+ 2% 解德+时三N、目力S12 , A B0 立 , 个4 > C,f 即 40力 > (2- - I).可将 r v 10 . 一一0 分2二当 jf < 1 0 时 j4n 最大* 当 108用名 12 时 f,用 A 4鼻 f>-*1* _-I j 分综上?若你是一名闯关
24、者.当你能冲过的美数小于10时,成选用第一种奖励方案;当你成冲过的关数大于等于io时,应选用第三种奖励方赛. -一-一一一一一12 an 1【2020江西师大附中高三下学期开学考卷文】数列an满足ai2, an 12 ani 1 n(n 心22(1)设 bn(2)设Cn2n一,求数列 bn的通项公式bn ; an1,数列 Cn的刖n项和为 Sn ,求Sn. n(n 1)an 1【解析】 本题主要考查了等比数列数列的前 n项和数列的综合应用.属于难题。考查了基础知识、基本运算、基本变换能力解:(I)由已知可得an 12n 1(nan2)an2nan 1an12(n)由Cn一 b2累加得又b1,n
25、 1即an 12nan即bnbnbibnbi(I )知 an(n 1)2 n(n 1)212n2(22F(12,b32n1n"-2b2bn2n2 -n 2n2,lbn 1(n 1)(n 1)n2 12an(n 1)nn2 12n 1n(n 1) 2n 2n (n 1)2n 121r)(n 1) 2n 12n 2(n 1)2 12n nn(n 1)2nn(n 1) 2n 1(n 1)2n1)少1【2020三明市普通高中高三上学期联考文】已知数列 an的前n项和是Sn,且2Sn 2 an(i)求数列 an的通项公式;(n)记bnann ,求数列bn的前n项和Tn【解析】本题主要考查了等差
26、数列、等比数列的概念以及它们的前 n项和.属于容易题。考查了基础知识、基本运算、基本变换能力 一_2斛:(I)当 n 1 时,262 a1 , 2al2a1,/. a1;3当::“球2分m阴式相够得_ G . = #._ 一 4,a1-即 3an an 1 (n 2),又 an 1 0 - (n 2),an 13一.2 ,、,一 1 ,数歹u &是以2为首项,1为公比的等比数歹u.33方分1c(n)由(i)知 bn 2 ()n n , 33 L 字(1 2 3 L n)【2020黄冈市高三上学期期末考试文】已知数列an中,a1Sn且 Sn 1(1)求数列an的通项公式; _ 1 _(2
27、)设数列4的前n项和为Tn ,求满足不等式Tnan12Sn 2的n值。【解析】 本题主要考查等比数列及不等式等基础知识,考查运算求解能力、转化能力。解:(I )解法1 :由sn 12sn 2 时 SniSn Sn 1 Sn 3(Sn2Sn1),即 an 13一 an2an 1an又 a1 1,得 S2 3 al21aia2,a2a23a12一一3 3.,数列an是首项为1,公比为-的等比数列,an(-)分3 .(n) .数列an是首项为1,公比为一的等比数列,2(2)n3TT331(2)n - 9 分2数列工是首项为1,公比为2的等比数列,. Tan3一3 C12又 Sn 2 ()n 2, 不
28、等式 Tn< 2Sn 2n=1 或 n=2 13分【2020武昌区高三年级元月调研文】某同学利用暑假时间到一家商场勤工俭学,该商场向他提供了三种付酬方案:第一种,每天支付 38元;第二种,第一天付 4元,第二天付8元,第三天付12元,依此类推;第三种,第一天付0. 4元,以后每天支付的薪酬是前一天薪酬的2倍,1:作时间为n天.(I)工作n天,记三种付费方式薪酬总金额依次为A, R, G,写出4, 3,。关于n的表达式;(II )如果n=10,你会选择哪种方式领取报酬?【解析】本题主要考查了应用问题、等差数列、等比数列的概念以及它们的前n项和.属于容易题。考查了基础知识、基本运算、基本变换
29、能力 解:(I)三种付酬方式每天金额依次为数列an ,bn , Cn ,它们的前n项和依次分别为An,Bn,Cn .依题意,第一种付酬方式每天金额组成数列第二种付酬方式每天金额组成数列n n 1,八 2贝U Bn 4n4 2n22第三种付酬方式每天金额组成数列an为常数数列,An 38n .bn为首项为4,公差为4的等差数列,2n.Cn为首项是0. 4,公比为2的等比数列,则Cn0.4 1 2n1 20.4 2n1(n)由(i)得,当 n 10时,An 38n 380 ,Bn2n2 2n 220 ,Cn0.4 2101409.2 .所以 Bi0Ai0Ci0.答:应该选择第三种付酬方案.【山东省济宁市邹城二中2020届高三第二次月考文】18、(本小题满分12分)设递增等差数列an的前n项和为Sn ,已知a31, a4是a3和a7的等比中项,(I)求数列an的通项公式;(II )求数列an的前n项和Sn .【答案】18、解:在递增等差数列an中,设公差为d 0,22a4a3 a7(& 3d)1 (a1 6d)a3 1& 2d 1a13解得 17分d 2an3 (n 1) 2 2n 5Sn n( 3 2n 5) n2 4n 2 2一所求 a
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 九年级音乐教师教研交流计划
- 人美版三年级美术教育教学改革计划
- 2025春统编版四年级语文下册课堂教学计划
- 幼儿园保教人才培养计划
- 人教版三年级数学教材配套练习计划
- 四年级数学教学资源开发利用计划
- 汽车营销培训课程
- 消防设施施工劳动力安排计划
- 在线教育创新创业计划书范文
- (部编版)四年级语文上册 第三单元教学计划
- 朗读协会工作报告
- 树木砍伐合同简单协议书
- T/CERDS 1-2021企业高质量发展评价指标
- 2025届上海市闵行区七下数学期末学业水平测试模拟试题含解析
- 安全大讲堂教学课件
- 静电放电(ESD)及其防护措施培训课件
- 社区干事考试试题及答案
- 2025年建筑工程管理考试试题及答案
- 2025年广西南宁宾阳县昆仑投资集团有限公司招聘笔试参考题库含答案解析
- DB11∕T045-2025医学实验室质量与技术要求
- 工程造价复审报告书范文
评论
0/150
提交评论