




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、 2.与半径垂直1.经过半径的外端;OAOA是O O的半径OAlOAl于Al l是O O的切线. O。ABP过圆外一点可以引圆的几条切线?过圆外一点可以引圆的几条切线?尺规作图:尺规作图:过过 O外一点作外一点作 O的切线的切线O PABO在经过圆外一点的切线上,这一点和切点之间的线在经过圆外一点的切线上,这一点和切点之间的线段的长叫做段的长叫做这点到圆的切线长。这点到圆的切线长。OPAB切线切线与与切线长切线长是一回事吗?是一回事吗?它们有什么区别与联它们有什么区别与联系呢?系呢? 切线切线:不可以度量。不可以度量。切线长:切线长:可以度量。可以度量。B OABP思考思考:已知已知 O切线切
2、线PA、PB,A、B为切点,把圆沿着直线为切点,把圆沿着直线OP对折对折,你能你能发现什么发现什么?12请证明你所发现的结论。请证明你所发现的结论。APOBPA = PBOPA=OPB证明:证明:PAPA,PBPB与与O O相切,点相切,点A A,B B是切点是切点 OAPAOAPA,OBPBOBPB 即即OAP=OBP=90 OA=OB,OP=OP RtRtAOPRtAOPRtBOP(HL)BOP(HL) PA = PB OPA=OPB试用文字语言试用文字语言叙述你所发现叙述你所发现的结论的结论PA、PB分别切分别切 O于于A、BPA = PBOPA=OPB 从从圆外一点引圆外一点引圆的两条
3、切线,圆的两条切线,它们的切线长它们的切线长相等。相等。 几何语言几何语言:反思反思:切线长定理为证明:切线长定理为证明线段相等线段相等、角相角相等等提供新的方法提供新的方法OPABAPOB 若连结两切点若连结两切点A A、B B,ABAB交交OPOP于点于点M.M.你又能得你又能得出什么新的结论出什么新的结论? ?并给出证明并给出证明. .OP垂直平分垂直平分AB证明:证明:PAPA,PBPB是是O O的切线的切线, ,点点A A,B B是切点是切点 PA = PB OPA=OPB PABPAB是等腰三角形是等腰三角形,PMPM为为顶角顶角的平分线的平分线 OP垂直平分垂直平分ABMAPO。
4、B 若延长若延长PO交交 O于点于点C,连结,连结CA、CB,你又你又能得出什么新的结论能得出什么新的结论? ?并给出证明并给出证明. .CA=CB证明:证明:PAPA,PBPB是是O O的切线的切线, ,点点A A,B B是切点是切点 PA = PB OPA=OPB PC=PCPC=PC PCA PCB AC=BCAC=BCC探究:探究:PA、PB是是 O的两条切的两条切线,线,A、B为切点,直线为切点,直线OP交于交于 O于点于点D、E,交,交AB于于C。BAPOCED(1)写出图中所有的垂直关系)写出图中所有的垂直关系OAPA,OB PB,AB OP(3)写出图中所有相等的线段)写出图中
5、所有相等的线段(2)写出图中与)写出图中与OAC相等的角相等的角OAC=OBC=APC=BPCOA=OB=OD=OE, PA-=PB, AC=BC, AE=BE 已知:如图已知:如图,PA,PA、PBPB是是OO的切线,切点分别的切线,切点分别是是A A、B B,Q Q为为ABAB上一点,过上一点,过Q Q点作点作OO的切线,的切线,交交PAPA、PBPB于于E E、F F点,已知点,已知PA=12CMPA=12CM,求,求PEFPEF的周长。的周长。EAQPFBO易证易证EQ=EA, FQ=FB,EQ=EA, FQ=FB, PA=PB PA=PB PE+EQ=PA=12cmPF+FQ=PF+
6、FQ=PB=PAPB=PA=12cm=12cm周长为24cm 变式:变式:如图所示如图所示PA、PB分别切分别切圆圆O于于A、B,并与圆,并与圆O的切线分别相交于的切线分别相交于C、D,已知,已知PA=7cm,(1)求求PCD的周长的周长(2) 如果如果P=46,求求COD的度数的度数C OPBDAE例例2、如图,四边形、如图,四边形ABCDABCD的边的边ABAB、BCBC、CDCD、DADA和和圆圆OO分别相切于点分别相切于点L L、M M、N N、P P, 求证:求证: AD+BC=AB+CD AD+BC=AB+CDDLMNABCOP证明:由切线长定理得证明:由切线长定理得AL=APAL
7、=AP,LB=MB,NC=MCLB=MB,NC=MC, DN=DPDN=DPAL+LB+NC+DN=AP+MB+MC+DPAL+LB+NC+DN=AP+MB+MC+DP 即即 AB+CD=AD+BCAB+CD=AD+BC补充:补充:圆的外切四边形的两组对边的和相等圆的外切四边形的两组对边的和相等。PBAO(3)连结圆心和圆外一点)连结圆心和圆外一点(2)连结两切点)连结两切点(1)分别连结圆心和切点)分别连结圆心和切点反思:在解决有关圆的切线长问题时,往往需要我们构建基本图形。 ABCEDFO 如图,如图,RtABC中,中,C90,BCa,ACb, ABc, O为为RtABC的内切圆的内切圆.
8、 求:求:RtABC的内切圆的半径的内切圆的半径 r. 解:解:设设RtABC的内切圆与三边相切于的内切圆与三边相切于D、E、F,连结连结OD、OE、OF则则OAAC,OEBC,OFAB。abc2设设RtABC的直角边为的直角边为a、b,斜边为,斜边为c,则,则RtABC的的内切圆的半径内切圆的半径 r 或或rabc2ababc OABCDEF OABCDE思考思考:如图,:如图,AB是是 O的直径,的直径,AD、DC、BC是切线,点是切线,点A、E、B为切点,若为切点,若BC=9,AD=4,求,求OE的长的长.例例1 1、已知:、已知:P P为为O O外一点,外一点,PAPA、PBPB为为O
9、 O的的切线,切线,A A、B B为切点,为切点,BCBC是直径。是直径。 求证:求证:ACOPACOPPACBDO切线长定理切线长定理 从圆外一点引圆的两条切线,它从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两们的切线长相等,圆心和这一点的连线平分两 条切线的夹角条切线的夹角。 APO。BECDPA、PB分别切分别切 O于于A、BPA = PB ,OPA=OPBOP垂直平分垂直平分AB 切线长定理为证明切线长定理为证明线段相等,角线段相等,角相等,弧相等,垂直关系相等,弧相等,垂直关系提供了理论提供了理论依据。必须掌握并能灵活应用。依据。必须掌握并能灵活应用。练习练习.
10、如图,如图,ABC中中,C =90 ,它的它的内切圆内切圆O分别与边分别与边AB、BC、CA相切相切于点于点D、E、F,且,且BD=12,AD=8,求求 O的半径的半径r.OEBDCAFBDEFOCA如图,如图,ABC的内切圆的半径为的内切圆的半径为r, ABC的周长为的周长为l,求求ABC的面积的面积S.解:解:设设ABC的内切圆与三边相切于的内切圆与三边相切于D、E、F,连结连结OA、OB、OC、OD、OE、OF,则则ODAB,OEBC,OFAC.SABCSAOBSBOC SAOC ABOD BCOE ACOF21212121 lr设设ABC的三边为的三边为a、b、c,面积为,面积为S,则则ABC的内切圆的半径的内切圆的半径 r2Sabc三角形的内切圆的有关计算三角形的内切圆的有关计算ABCEDFO如图,如图,RtABC中,中,C90,BC3,AC4, O为为RtABC的内切圆的内切圆. (1)求)求RtABC的内切圆的半径的内切圆的半径 . (2)若移动点)若移动点O的位置,使的位置,使 O保持与保持与ABC的边的边AC、BC都相切,求都相切,求 O的半径的半径r的取值范围。的取值范围。 解:解:(1)设)设RtABC的内切圆与三边相的内切圆与三边相切于切于D、E、F,连结,连结OD、OE、OF则则OAAC,OEBC,OFAB。 RtABC的内切圆的的内切圆的半径为半
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 情感分析客服机器人创新创业项目商业计划书
- 家畜养殖的新能源利用创新创业项目商业计划书
- 2025网络文学IP产业链产业链融合与价值实现模式报告
- 营销储备干部培训课件
- 水痘的护理常规
- 办公软件技术支持与维护合同
- 水痘护理培训课件
- 医疗仪器设备安装维修技术合作协议
- 生产员工个人年终总结
- 水电站运行仿真实验课件
- 2025年8月广东深圳市光明区住房和建设局招聘一般专干5人备考练习题库及答案解析
- 《煤矿安全规程(2025)》防治水新旧条文对照
- GB 16807-2025防火膨胀密封件
- 麻醉医生进修汇报课件
- 开学第一课+课件-2025-2026学年人教版(2024)七年级英语上册
- 医院医疗收费培训课件
- 大咯血的急救和护理
- 名学快问快答题目及答案
- 2025年党员干部廉政知识中央《八项规定》知识测试题及答案
- 《人工智能基础与应用(第2版)》完整全套教学课件
- 【MOOC答案】《VLSI设计基础(数字集成电路设计基础)》(东南大学)章节作业慕课答案
评论
0/150
提交评论