PWM逆变器Matlab仿真设计_第1页
PWM逆变器Matlab仿真设计_第2页
PWM逆变器Matlab仿真设计_第3页
PWM逆变器Matlab仿真设计_第4页
PWM逆变器Matlab仿真设计_第5页
免费预览已结束,剩余14页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、PW啦变器MATLA的真1设计方案的选择与论证从题目的要求可知,输入电压为110V直流电,而输出是有效值为220V的交流电,所以这里涉及到一个升压的问题,基于此有两种设计思路第一种是进行DC-DCM压变换再进行逆变,另一种是先进行逆变再进行升压。除此之外,要得到正弦交流电压还要考虑滤波等问题,所以这两种方案的设计框图分别如下图所示:图1-1方案一:先升压再逆变图1-2方案二:先逆变,再升压方案选择:方案一:采用DC-DC压斩波电路具可靠性高、响应速度、噪声性能好,效率高,但不适用于升压倍率较高的场合,另外升压斩波电路在初期会产生超调趋势(这一点将在后文予以讨论),在与后面的逆变电路相连时必须予

2、以考虑,我们可以采用附加控制策略的办法来减小超调量同时达到较短的调节时间,但这将增加逆变器的复杂度和设计成本。方案二:采用变压器对逆变电路输出的交流电进行升压,这种方法效率一般可达90%以上、可靠性较高、抗输出短路的能力较强,但响应速度较慢,体积大,波形畸变较重。从以上的分析可以看出两种方案有各自的优缺点,但由于方案二设计较为简便,因此本论文选择方案二作为最终的设计方案,但对于方案一的相关内容也会在后文予以讨论。2逆变主电路设计2.1 逆变电路原理及相关概念.专业.专注.逆变与整流是相对应的,把直流电变为交流电的过程称为逆变。根据交流侧是否与交流电网相连可将逆变电路分为有源逆变和无源逆变,在不

3、加说明时,逆变一般指无源逆变,本论文针对的就是无源逆变的情况;根据直流侧是恒流源还是恒压源又将逆变电路分为电压型逆变电路和电流型逆变电路,电压型逆变电路输出电压的波形为方波而电流型逆变电路输出电流波形为方波,由于题目要求对输出电压进行调节,所以本论文只讨论电压型逆变电路;根据输出电压电流的相数又将逆变电路分为单相逆变电路和三相逆变电路,由于题目要求输出单相交流电,所以本论文将只讨论单相逆变电路。2.2 逆变电路的方案论证及选择从上面的讨论可以看出本论文主要讨论单相电压型无源逆变电路,电压型逆变电路的特点除了前文所提及的之外,还有一个特点即开关器件普遍选择全控型器件如IGBT,电力MOSFET,

4、有三种方案可供选择,下面分别予以讨论:方案一:半桥逆变电路,如下图所示,其特点是有两个桥臂,每个桥臂有一个可控器件和一个反并联二极管组成。在直流侧接有两个相互串联的足够大的电容,两个电容的连接点为直流电源的中点。反并联二极管为反馈电感中储存的无功能量提供通路,直流侧电容正起着缓冲无功能量的作用。具优点为简单,使用器件少,缺点为输出交流电压的幅值仅为直流电源电压的一半,且直流侧需要两个电容器用联,工作时还要控制两个电容器电压的均衡,因此它只适用于几千瓦以下的小功率逆变电路。图2-1半桥逆变电路方案二:全桥逆变电路,如下图所示:其特点是有四个桥臂,相当于两个半桥电路的组合,其中桥臂1和4作为一对,

5、桥臂2和3作为一对,成对的两个桥臂同时导通,两对.专业.专注.交替各导通180°,其输出矩形波的幅值是半桥电路的两倍。全桥电路在带阻感负载时还可以采用移相调压的方式输出脉冲宽度可调的矩形波。UdV1_lV3VD1RioLVD3UoV2VD2V4VD4图2-2全桥逆变电路方案三:带中心抽头变压器的逆变电路,其主要特点是交替驱动两个IGBT,通过变压器耦合给负载加上矩形波电压。两个二极管的作用也是给负载电感中储存的无功能量提供反馈通道,该电路虽然比全桥电路少了一半开关器件,但器件承受的电压约为2Ud,比全桥电路高一倍,且必须有一个变压器。图2-3带中心抽头变压器的逆变电路方案选择:全桥电

6、路和带中心抽头变压器的逆变电路的电压利用率是一样的,均比半桥电路大一倍。又由于全桥结构的控制方式比较灵活,所以本篇论文选择单相桥式逆变电路作为逆变器的主电路。.专业.专注.2.3 建立单相桥式逆变电路的Simulink的仿真模型2.3.1 模型假设1)所有开关器件都是理想开关器件,即通态压降为零,断态压降为无穷大,并认为各开关器件的换流过程在瞬间完成,不考虑死区时间。2)所有的输入信号包括触发信号、电源电压稳定,不存在波动。2.3.2 利用MATLAB/Simulink进行电路仿真在Simulink工作空间中添加如下元件:Simscape/SimPowerSystems/PowerElectr

7、onics中的Diode、IGBT模块Simscape/SimPowerSystems/ElectricalSources/DCVoltageSource模块Simscape/SimPowerSystems/Elements/SeriesRLCBranch模块Simscape/SimPowerSystems/Measurements/CurrentMeasurement模块Simscape/SimPowerSystems/Measurements/Multimeter模块Simscape/SimPowerSystems/powergui模块Simulink/Source/PulseGenera

8、tor模块Simulink/Sinks/FloatingScope模块Simulink/SignalRouting/Demux模块利用上述模块构成如下图所示的单相桥式逆变电路模型Pxu!d'图2-4单相桥式逆变电路模型.专业.专注.各个模块的参数设置如下:“DCVoltageSource”模块幅值设为110V;“powergui”中“Simulationtype”选为"continuous”,并且选中“Enableuseofidealswitchingdevice”复选框;“PulseGenerator3”中“Amplitude”设为1,由于题目要求输出电压频率为50Hz,即

9、周期为0.02S,所以“Period”设为0.02,“PhaseDelay”设为零,即初始相位为零,这一路脉冲送出去用来驱动桥臂1和3;“PulseGenerator1”的“PhaseDelay”设为0.01,相当于延迟半个周期,以形成与“PulseGenerator3”互补的触发脉冲用来驱动桥臂2和4,其他参数与"PulseGenerator3”相同;"Solver”求解器算法设为ode45;仿真时间设为5S,之后便可以开始仿真了,仿真后Scope输出波形如下图所示,图中自上而下依次为负载的电压、电流、电源侧电流波形。图2-5单相桥式逆变电路Scope输出波形从图中可以看

10、出波形与理论上的波形形状相同,说明此逆变电路工作正常3正弦脉宽调制(SPWM原理及控制方法的Simulink仿真3.1 正弦脉冲宽度调制(spwmM理PWM永宽调制技术就是对脉冲宽度进行调制的技术。即通过对一系列脉冲宽度进行调制,来等效的获得所需要的波形(含幅值和形状)。PWM勺一条最基本的结论是:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时其效果基本相同,冲量即窄脉冲面积,这就是我们通常所说的“面积等效”原理。因此将正弦半波分成N等分,每一份都用一个矩形脉冲按面积原理等效,令这些矩形脉冲的幅值相等,则其脉冲宽度将按正弦规律变化,这种脉冲宽度按正弦规律变化而和正弦波等效的PWMK形叫做SP

11、WM示意图如下图所示:.专业.专注.图3-1SPWM乐意图3.2 SPWM波的控制方法SPW跛的产生方法有计算法和调制法,计算法很繁琐,不易实现,所以在这里不作介绍,重点介绍调制法,即把希望输出的波形作为调制信号u,,把接受调制的信号作为载波uc,通过信号波调制得到所期望的PWMfe形。通常采用等腰三角波作为载波,因为等腰三角波上任一点的水平宽度和高度呈线性关系且左右对称,当它与任何一个缓慢变化的调制信号波相交时,如果在交点时刻对电路中的开关器件进行通断控制,就可得到SPWMK,常见的SPW雌制方法有单极性SPW雌制,双极性SPW腑制。3.2.1 双极性SPW眺制原理及Simulink仿真所谓

12、的双极性是指在调制信号波的半个周波内三角载波有正负两种极性变化。用调制信号波与三角载波比较的方法可以产生双极性SPWMt其仿真原理图如下图所示:sinOperator3a'aConwersioiTrigcwiOtnetricFoncti-onSequenceOperator:O图3-2双极性SPW防号仿真原理图.专业.专注.其输出波形如下图所示:图3-3双极性SPW防号仿真Scope输出波形图现用SPW敏产生模块驱动单相桥式逆变电路工作进行仿真,方法是在Simulink中选中SPWM生电路,然后右键选择“CreateSubsystem”将其放入到一个"Subsystem(子系

13、统)”中,配置好其输入输出引脚,然后右击该模块,选择“MaskSubsystem"对其进行封装,图3-4双极性PWME变电路仿真模型.专业.专注.电路中RLC皆取默认值,DCVoltageSource值取为110V,仿真后scope输出波形如下图所示:t仲:二厢aS图3-5双极性PWME变电路Scope输出波形3.2.2 单极性SPWI®制原理及Simulink仿真所谓的单极性是指在调制信号波的半个周波内三角载波有零、正或零、负一种极性变化,单极性型spwMJ号的产生比双极性复杂些,要按调制波每半个周期对调制波本身或将该模块做封装后来驱动单相全桥逆变电路,为了使模型结构更加

14、清晰,本次仿真采用Simulink库中自带的“UniversalBridge(通用桥)”代替由电力电子器件组合而成的桥式逆变电路,仿真模型如下图所示:.专业.专注.MultimeterCurrenffleasurernentDCVoltageSourt:epowerguigASeriesRLCBranch9BDiscrete,s=le-06skSubsystemUniversaffindgePWMJ图3-7单极性PWME变电路仿真模型在"UniversalBridge”模块的属性对话框中,令桥臂数为2即构成单相桥式逆变电路;在“DCVoltageSource”中将直流电压值设为110

15、V;PW吸:生器的调制度设为0.5,频率设为50Hz,载波频率设为基波频率的15倍,所以令fc=750,即可开始仿真,仿真后Scope输出波形如下图所示:图3-8单极性PWME变电路Scope输出波形4升压电路的分析论证及仿真前文提到过升压有两种方案,一是先进行升压再进行逆变,二是先进行逆变再进行开压,这一节主要讨论先通过Boost电路升压再进行逆变的方法。4.1Boost电路工作原理.专业.专注.升压斩波电路如下图所示。假设L值、C值很大,V通时,E向L充电,充电电流包为I1,同时C的电压向负载供电,因C值很大,输出电压uo为恒值,记为Ud设V通的时间为ton,此阶段L上积蓄的能量为Elit

16、on。V断时,E和L共同向C充电并向负载R供电设V断的时间为toff,则此期间电感L释放能量为(UoE)litoff,稳态时,一个周期T中L积蓄能量与释放能量相等,即EIiton=(Uo-E)Iitoff(4-1)化简得:Uo二丁toff(4-2)输出电压高于电源电压,故称升压斩波电路,也称之为Boost变换器T与0的比值为升压比,将升压比的倒数记作B,则1(4-3)升压斩波电路能使输出电压高于电源电压的原因:L储能之后具有使电压泵升的作用,并且电容C可将输出电压保持住。LioVD-1-HEVC丁.R图4-1Boost电路原理图4.2Boost电路的Simulink仿真在Simulink中建立

17、Boost电路的仿真模型,如下图所示:在“DCVoltageSource”中设置其幅值为110V;在“PulseGenerator”中设置Period=0.0001S,PulseWidth(占空比)=64.6%,这样才能使输出为311V(220&V)。.专业.专注.仿真后Multimater输出波形如下图所示:Ub:R图4-3Boost电路Multimeter输出波形从图中可以看出Boost响应曲线具有超调趋势,超调量的大小与L和C值的选取有关,一般希望超调量越小越好,纹波越小越好,调节时间越短越好,为了保证这几点,需要采用附加控制策略,这样使系统变得复杂,经过这样一番分析我决定采用先

18、逆变后升压的方法,采用升压变压器,其参数设置相对简便,同时也可以的到良好的效果。5滤波器设计采用spwM$制方式输出的电压波形中含有基波同时含有与载波频率整数倍及其附近的谐波,载波比越高,最低次谐波离基波便越远,也容易进行滤波。比较常用的是LC低通滤波器,其电路图如下图所示:.专业.专注.图5-1LC低通滤波器通过适当的选取滤波器的截止频率:fL=12*xLC(5-1)使其远小于PWMfe压中所含有的最低次谐波频率,同时又远大于基波频率,就可以在输出端得到较为理想的正弦波。可以证明上述LC低通滤波器的传递函数为:Uo(s)_1Ui(s)Js2+2-s+1LL(5-2)其中LLC谐振角频率,_;

19、阻尼系数,_xiUUo(s)滤LL,LC2R,C波器输出电压;Ui(s)滤波器/&入电压;s拉普拉斯变换算子。从其传递函数的形式可以看出它是一个二阶系统,我们可以用MATLAIM出具波特图,从而对LC低通滤波器的特性有一个直观的理解,其波特图如下图所示:BodeDiagram图5-2LC低通滤波器的波特图.专业.专注.在MATLA叶有一个二阶滤波器模型叫做2nd-OrderFilter",我们可以直接设置其截止频率,属性页如下图所示:图5-32nd-OrderFilter属性页由于本题希望输出电压频率为50Hz,根据前面所述,此处截至频率可取为100Hz。6PWM变器总体模型

20、在Simulink中按下图接线-»Curre/1肛PWMGencnIintJirFEwiTwti逆变PWM发生器升压滤波图6-1PWM总体模型各个模型主要参数设置:“DCVoltageSource”幅值设为110V;"UniversalBridge”设置为2个桥臂;"DescretePWMBenerator"中"GeneratorModS设置为2-arm-bridge(4pulses);“Carrierfrequency(载波频率)”设置为750Hz;"Modulationindex(调制深度)”:0.7,"Frequenc

21、yofoutputvoltage”设置为50Hz;"LinearTransformer(线性变压器)”变比为150/611;“2nd-OrderFilter”中“Cut-offfrequency”设为100Hz;.专业.专注.SeriesRLCBranch"中R=50,L=10-3H;仿真时间为10s。所有参数设置完毕后可以启动仿真,仿真结束后Scopel(与滤波器相连的示波器)的输出波形如下图所示:图6-2Scopel输出波形Scope输出波形如下图所示:图6-3Scope输出波形为了看的的更加清楚,在Scope1的属性页中勾选Savedatatoworkspace(见图

22、6-4),将数据保存到MATLABE作空间中,在命令窗口中调用如下命令:>>plot(ScopeData1.time,ScopeData1.signals.values,'-r')> >gridon> >title('Scope1输出波形')> >xlabel('时间/秒').专业.专注.>>ylabel('幅值/伏')可得到重新绘制的Scope输出波形见图6-5图6-4Scopel属性4图6-5命令行绘制的Scopel输出波形从图中6-5中可以看出Scopel输出波形基本上为标准正弦波,周期为0.02S,频率为50Hz,从图6-1中可以看出Display显示有效值为220.2V,基本上满足设计要求。.专业.专注.7心得体会此次课程设计首先让我明白了PW顺变器各功能模块可以拥有不同设计方案,每种方案有其特点和适用范围。在进行课题设计的过程中,加深了我对DC-DC逆变电路、PWM控制等知识点的理解和掌握。这次课程设计同样也综合应用了很多以前的知识,只有能够综合应用才能做好本课程设计,同时通过本次设计也对其他知识有了一次很好的温习。其中,重点用到了MATLAB仿真、电力电子技术等等。在今后的学习中,我会发挥积极主动的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论