



下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、精选一、选择题1、有3个产地4个销地的平衡运输问题模型具有特征( D )A有7个变量 B有12个约束 C有6约束 D有6个基变量2、X是线性规划的基本可行解则有( C )AX中的基变量非零,非基变量为零 BX不肯定满足约束条件 CX中的基变量非负,非基变量为零 DX是最优解3、设线性规划的约束条件为则基本可行解为(C)A(0, 0, 4, 3) B(3, 4, 0, 0) C(2, 0, 1, 0) D(3, 0, 4, 0)4、若线性规划问题的最优解同时在可行解域的两个顶点处达到,那么该线性规划问题最优解为(C ) A.两个
2、; B.零个 C.无穷多个 D.有限多个5、若原问题中ix为自由变量,那么对偶问题中的第i个约束肯定为 ( A ) A等式约束
3、0;B“”型约束 C“”约束 D无法确定6、若P为网络G的一条流量增广链,则P中全部正向弧都为G的( D ) A对边 B饱和边 C邻边
4、0; D不饱和边7、对于线性规划问题,下列说法正确的是( D )A 线性规划问题可能没有可行解 B 在图解法上,线性规划问题的可行解区域都是“凸”区域C 线性规划问题假如有最优解,则最优解可以在可行解区域的顶点上到达 D 上述说法都正确8、在求解运输问题的过程中运用到下列哪些方法( D ) A.西北角法 B.位势法 C.闭回路法
5、160;D.以上都是二、填空题1、有5个产地5个销地的平衡运输问题,则它的基变量有( 9 )个2、设运输问题求最大值,则当全部检验数(小于等于0 )时得到最优解3、线性规划中,满足非负条件的基本解称为(基本可行解),对应的基称为( 可行基 )。 4、线性规划的目标函数的系数是其对偶问题的(右端常数);而若线性规划为最大化问题,则对偶问题为(最小化问题)。5、一个(无圈)且(连通)的图称为树。6、在图论方法中,通常用(点)表示人们争辩的对象,用(边)表示对象之间的某种联系。7、求解指派问题的方法是(匈牙利法)
6、60; 8、求最小生成树问题,常用的方法有:(避圈法)和(破圈法)9、假如有两个以上的决策自然条件,但决策人无法估量各自然状态消灭的概率,那么这种决策类型称为(不确定)型决策。10、线性规划闯题中,假如在约束条件中消灭等式约束,我们通常用增加(人工变量)的方法来产生初始可行基。三、推断题1、凡基本解肯定是可行解(×)当非负时为基本可行解,对应的基叫可行基2、运输问题效率表中某一行元素分别乘以一个常数,则最优解不变(×)3、m+n1个变量构成基变量组的充要条件是它们不包含闭回路()4、若原问题具有m个约束,
7、则它的对偶问题具有m个变量( )5、网络最大流量是网络起点至终点的一条增流链上的最大流量。 ( × )6、工程方案网络中的关键路线上事项的最早时间和最迟时间往往是不相等。 ( × ) 7、用单纯形法求解一般线性规划时,当目标函数求最小值时,若全部的检验数Cj-Zj0,则问题达到最优。(×)8、运输问题是一种特殊的线性规划模型,因而求解结果也可能消灭下列四种状况之一:有惟一最优解,有无穷多最优解,无界解,无可行解(× )9、在二
8、元线性规划问题中,假如问题有可行解,则肯定有最优解(×) 10、 无孤立点的图肯定是连通图()四、计算题1、求解下列运输问题(min)2、求下图v1到v8的最短路及最短路长3、用单纯形法求解;并对以下状况作灵敏度分析:(1)求的变化范围;(2)若右边常数向量变为,分析最优解的变化。4、已知一个线性规划原问题如下,请写出对应的对偶模型 答案:1、最优值Z=1690,最优表如下: 销地产地B1B2B3产量A1 ×8×540440A27014×18201390A31091002×10110销量80100602402、v1到v8的最短路有两条:P18=v1,v3,v6,v8及P18=v1,v3,v7,v6,v8,最短路长为21。3、加入人工变量,化问题为标准型式如下:下面用单纯形表进行计算得终表为:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025标准版租赁合同协议书
- 2025建筑工程质量检测有限公司委托合同
- 2025机械设备产品买卖合同范本
- 2025年的房屋租赁合同模板
- 2025建筑工程设计咨询合同(项目)
- 2025年城市住宅租赁合同协议
- 2025西安市企业员工劳动合同书
- 2025公寓租赁合同模板
- 医药学院教学课件:中药现代化与中西医结合
- 2025室内设计委托合同书模板
- (修订版)粮油质量检验员理论考试复习题库-下多选、判断题
- 人教版高一体育羽毛球大单元(正手发高远球技术)教案
- DB3502-T 134-2024 质量基础设施协同服务 平台建设与管理规范
- 保险行业客户画像分析与精准营销方案
- 废弃物生命周期评估与管理
- 沪教版小学六年级数学应用题150道及答案
- 2024年全国执业兽医考试真题及答案解析
- 2024年贵州省黔南州中考文科综合试卷(含答案解析)
- 北师大版四年级下册小数乘法竖式计算练习100题及答案
- 食堂大米采购招标文件
- CJT 216-2013 给水排水用软密封闸阀
评论
0/150
提交评论