2013年各地中考数学压轴题精选一[1]_第1页
2013年各地中考数学压轴题精选一[1]_第2页
2013年各地中考数学压轴题精选一[1]_第3页
2013年各地中考数学压轴题精选一[1]_第4页
2013年各地中考数学压轴题精选一[1]_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2013年各地中考压轴题精选一1、(2013泰安)如图,抛物线y=x2+bx+c与y轴交于点C(0,4),与x轴交于点A,B,且B点的坐标为(2,0)(1)求该抛物线的解析式(2)若点P是AB上的一动点,过点P作PEAC,交BC于E,连接CP,求PCE面积的最大值(3)若点D为OA的中点,点M是线段AC上一点,且OMD为等腰三角形,求M点的坐标考点:二次函数综合题分析:(1)利用待定系数法求出抛物线的解析式;(2)首先求出PCE面积的表达式,然后利用二次函数的性质求出其最大值;(3)OMD为等腰三角形,可能有三种情形,需要分类讨论解答:解:(1)把点C(0,4),B(2,0)分别代入y=x2+

2、bx+c中,得,解得该抛物线的解析式为y=x2+x4(2)令y=0,即x2+x4=0,解得x1=4,x2=2,A(4,0),SABC=ABOC=12设P点坐标为(x,0),则PB=2xPEAC,BPE=BAC,BEP=BCA,PBEABC,即,化简得:SPBE=(2x)2SPCE=SPCBSPBE=PBOCSPBE=×(2x)×4(2x)2=x2x+=(x+1)2+3当x=1时,SPCE的最大值为3(3)OMD为等腰三角形,可能有三种情形:(I)当DM=DO时,如答图所示DO=DM=DA=2,OAC=AMD=45°,ADM=90°,M点的坐标为(2,2)

3、;(II)当MD=MO时,如答图所示过点M作MNOD于点N,则点N为OD的中点,DN=ON=1,AN=AD+DN=3,又AMN为等腰直角三角形,MN=AN=3,M点的坐标为(1,3);(III)当OD=OM时,OAC为等腰直角三角形,点O到AC的距离为×4=,即AC上的点与点O之间的最小距离为2,OD=OM的情况不存在综上所述,点M的坐标为(2,2)或(1,3)2、(2013湛江)如图,在平面直角坐标系中,顶点为(3,4)的抛物线交y轴于A点,交x轴于B、C两点(点B在点C的左侧),已知A点坐标为(0,5)(1)求此抛物线的解析式;(2)过点B作线段AB的垂线交抛物线于点D,如果以点

4、C为圆心的圆与直线BD相切,请判断抛物线的对称轴l与C有什么位置关系,并给出证明;(3)在抛物线上是否存在一点P,使ACP是以AC为直角边的直角三角形?若存在,求出点P的坐标;若不存在,请说明理由考点:二次函数综合题3338333分析:(1)由顶点式,利用待定系数法求出抛物线的解析式;(2)判断直线与圆的位置关系,关键是分析圆的半径r和圆心到直线距离d之间的大小关系由题意可知d=2,由相似三角形求得r=,因为2,所以可判定抛物线的对称轴l与C相离;(3)本问是存在性问题点P有两种情况,分别位于x轴上方与下方,需要分类讨论,注意不要漏解;在求点P坐标时,需要充分利用几何图形(等腰直角三角形)的性

5、质,以及抛物线上点的坐标特征解答:解:(1)设抛物线解析式为:y=a(x3)2+4,将A(0,5)代入求得:a=1,抛物线解析式为y=(x3)2+4=x2+6x5(2)抛物线的对称轴l与C相离证明:令y=0,即x2+6x5=0,得x=1或x=5,B(1,0),C(5,0)如答图所示,设切点为E,连接CE,由题意易证RtABORtBCE,即,求得C的半径CE=;而点C到对称轴x=3的距离为2,2,抛物线的对称轴l与C相离(3)存在理由如下:有两种情况:(I)如答图所示,点P在x轴上方A(0,5),C(5,0),AOC为等腰直角三角形,OCA=45°;PCAC,PCO=45°过

6、点P作PFx轴于点F,则PCF为等腰直角三角形设点P坐标为(m,n),则有OF=m,PF=CF=n,OC=OF+CF=m+n=5 又点P在抛物线上,n=m2+6m5 联立式,解得:m=2或m=5当m=5时,点F与点C重合,故舍去,m=2,n=3,点P坐标为(2,3);(II)如答图所示,点P在x轴下方A(0,5),C(5,0),AOC为等腰直角三角形,OAC=45°;过点P作PFx轴于点F,PAAC,PAF=45°,即PAF为等腰直角三角形设点P坐标为(m,n),则有PF=AF=m,OF=n=OA+AF=5+m,m+n=5 又点P在抛物线上,n=m2+6m5 联立式,解得:

7、m=0或m=7当m=0时,点F与原点重合,故舍去,m=7,n=12,点P坐标为(7,12)综上所述,存在点P,使ACP是以AC为直角边的直角三角形点P的坐标为(2,3)或(7,12)3、(2013梅州)用如图,所示的两个直角三角形(部分边长及角的度数在图中已标出),完成以下两个探究问题:探究一:将以上两个三角形如图拼接(BC和ED重合),在BC边上有一动点P(1)当点P运动到CFB的角平分线上时,连接AP,求线段AP的长;(2)当点P在运动的过程中出现PA=FC时,求PAB的度数探究二:如图,将DEF的顶点D放在ABC的BC边上的中点处,并以点D为旋转中心旋转DEF,使DEF的两直角边与ABC

8、的两直角边分别交于M、N两点,连接MN在旋转DEF的过程中,AMN的周长是否存在有最小值?若存在,求出它的最小值;若不存在,请说明理由考点:几何变换综合题分析:(1)如答图1所示,过点A作AGBC于点G,构造RtAPG,利用勾股定理求出AP的长度;(2)如答图2所示,符合条件的点P有两个解直角三角形,利用特殊角的三角函数值求出角的度数;(3)如答图3所示,证明AMDCND,得AM=CN,则AMN两直角边长度之和为定值;设AM=x,求出斜边MN的表达式,利用二次函数的性质求出MN的最小值,从而得到AMN周长的最小值解答:解:探究一:(1)依题意画出图形,如答图1所示:由题意,得CFB=60

9、76;,FP为角平分线,则CFP=30°,CF=BCsin30°=3×=,CP=CFtanCFP=×=1过点A作AGBC于点G,则AG=BC=,PG=CGCP=1=在RtAPG中,由勾股定理得:AP=(2)由(1)可知,FC=如答图2所示,以点A为圆心,以FC=长为半径画弧,与BC交于点P1、P2,则AP1=AP2=过点A过AGBC于点G,则AG=BC=在RtAGP1中,cosP1AG=,P1AG=30°,P1AB=45°30°=15°;同理求得,P2AG=30°,P2AB=45°+30

10、6;=75°PAB的度数为15°或75°探究二:AMN的周长存在有最小值如答图3所示,连接ADABC为等腰直角三角形,点D为斜边BC的中点,AD=CD,C=MAD=45°EDF=90°,ADC=90°,MDA=NDC在AMD与CND中,AMDCND(ASA)AM=CN设AM=x,则CN=x,AN=ACCN=BCCN=x在RtAMN中,由勾股定理得:MN=AMN的周长为:AM+AN+MN=+,当x=时,有最小值,最小值为+=AMN周长的最小值为点评:本题是几何综合题,考查了解直角三角形、勾股定理、全等三角形、二次函数最值等知识点难点在于

11、第(3)问,由发现并证明AMDCND取得解题的突破点,再利用勾股定理和二次函数的性质求出最小值4、(2013广州)已知抛物线y1=ax2+bx+c(a0,ac)过点A(1,0),顶点为B,且抛物线不经过第三象限(1)使用a、c表示b;(2)判断点B所在象限,并说明理由;(3)若直线y2=2x+m经过点B,且于该抛物线交于另一点C(),求当x1时y1的取值范围考点:二次函数综合题3338333分析:(1)抛物线经过A(1,0),把点代入函数即可得到b=ac;(2)判断点在哪个象限,需要根据题意画图,由条件:图象不经过第三象限就可以推出开口向上,a0,只需要知道抛物线与x轴有几个交点即可解决,判断

12、与x轴有两个交点,一个可以考虑,由就可以判断出与x轴有两个交点,所以在第四象限;或者直接用公式法(或十字相乘法)算出,由两个不同的解,进而得出点B所在象限;(3)当x1时,y1的取值范围,只要把图象画出来就清晰了,难点在于要观察出是抛物线与x轴的另一个交点,理由是,由这里可以发现,b+8=0,b=8,a+c=8,还可以发现C在A的右侧;可以确定直线经过B、C两点,看图象可以得到,x1时,y1大于等于最小值,此时算出二次函数最小值即可,即求出即可,已经知道b=8,a+c=8,算出a,c即可,即是要再找出一个与a,c有关的式子,即可解方程组求出a,c,直线经过B、C两点,把B、C两点坐标代入直线消

13、去m,整理即可得到ca=4联立a+c=8,解得c,a,即可得出y1的取值范围解答:解:(1)抛物线y1=ax2+bx+c(a0,ac),经过A(1,0),把点代入函数即可得到:b=ac;(2)B在第四象限理由如下:抛物线y1=ax2+bx+c(a0,ac)过点A(1,0),所以抛物线与x轴有两个交点,又因为抛物线不经过第三象限,所以a0,且顶点在第四象限;(3),且在抛物线上,b+8=0,b=8,a+c=b,a+c=8,把B、C两点代入直线解析式易得:ca=4,即解得:,如图所示,C在A的右侧,当x1时,点评:此题主要考查了二次函数的综合应用以及根与系数的关系和一次函数与二次函数交点问题等知识

14、,根据数形结合得出是解题关键5、(2013襄阳)如图,已知抛物线y=ax2+bx+c与x轴的一个交点A的坐标为(1,0),对称轴为直线x=2(1)求抛物线与x轴的另一个交点B的坐标;(2)点D是抛物线与y轴的交点,点C是抛物线上的另一点已知以AB为一底边的梯形ABCD的面积为9求此抛物线的解析式,并指出顶点E的坐标;(3)点P是(2)中抛物线对称轴上一动点,且以1个单位/秒的速度从此抛物线的顶点E向上运动设点P运动的时间为t秒当t为2秒时,PAD的周长最小?当t为4或4或4+秒时,PAD是以AD为腰的等腰三角形?(结果保留根号)点P在运动过程中,是否存在一点P,使PAD是以AD为斜边的直角三角

15、形?若存在,求出点P的坐标;若不存在,请说明理由考点:二次函数综合题3801346分析:(1)根据抛物线的轴对称性可得抛物线与x轴的另一个交点B的坐标;(2)先根据梯形ABCD的面积为9,可求c的值,再运用待定系数法可求抛物线的解析式,转化为顶点式可求顶点E的坐标;(3)根据轴对称最短路线问题的求法可得PAD的周长最小时t的值;根据等腰三角形的性质可分三种情况求得PAD是以AD为腰的等腰三角形时t的值;先证明APNPDM,根据相似三角形的性质求得PN的值,从而得到点P的坐标解答:解:(1)由抛物线的轴对称性及A(1,0),可得B(3,0)(2)设抛物线的对称轴交CD于点M,交AB于点N,由题意

16、可知ABCD,由抛物线的轴对称性可得CD=2DMMNy轴,ABCD,四边形ODMN是矩形DM=ON=2,CD=2×2=4A(1,0),B(3,0),AB=2,梯形ABCD的面积=(AB+CD)OD=9,OD=3,即c=3把A(1,0),B(3,0)代入y=ax2+bx+3得,解得y=x2+4x+3将y=x2+4x+3化为顶点式为y=(x+2)21,得E(2,1)(3)当t为2秒时,PAD的周长最小;当t为4或4或4+秒时,PAD是以AD为腰的等腰三角形存在APD=90°,PMD=PNA=90°,PDM+APN=90°,DPM+PDM=90°,P

17、DM=APN,PMD=ANP,APNPDM,=,=,PN23PN+2=0,PN=1或PN=2P(2,1)或(2,2)故答案为:2;4或4或4+点评:考查了二次函数综合题,涉及的知识点为:抛物线的轴对称性,梯形的面积计算,待定系数法求抛物线的解析式,抛物线的顶点式,轴对称最短路线问题,等腰三角形的性质,相似三角形的判定和性质,综合性较强,有一定的难度6、(2013哈尔滨) 已知:ABD和CBD关于直线BD对称(点A的对称点是点C),点E、F分别是线段BC 和线段BD上的点,且点F在线段EC的垂直平分线上,连接AF、AE,AE交BD于点G (1)如图l,求证:EAF=ABD; (2)如图2,当AB

18、=AD时,M是线段AG上一点,连接BM、ED、MF,MF的延长线交ED于点N,MBF= BAF,AF=AD,试探究线段FM和FN之间的数量关系,并证明你的结论考点:本题考查了三角形全等的判断和性质,相似三角形的判断和性质,平行线分线段成比例定理,轴对称性质,三角形四边形内角和,线段的垂直平分线性质要求较高的视图能力和证明推理能力。分析:(1)连接FE、FC,先证ABF、CBF全等,得FEC=BAF,通过四边形ABEF与三角形AEF内角和导出;(2)先由AFGBFA,推出AGF=BAF,再得BG=MG,通过AGFDGA,导出GD=a,FD=a,过点F作FQED交AE于Q,通过BEAD德线段成比例

19、设EG=2kBG=MG=3k,GQ=EG=,MQ=3k+=,从而FM=FN本题综合考查了相似三角形线段之间的比例关系、平行线分线段成比例定理等重要知识点,难度较大在解题过程中,涉及到数目较多的线段比,注意不要出错解答:(1)证明:如图1 连接FE、FC 点F在线段EC的垂直平分线上 FE=FC l=2 ABD和CBD关于直线BD对称AB=CB 4=3 BF=BF ABFACBF BAF=2 FA=FC FE=FA 1=BAF 5=6 l+BEF=1800BAF+BEF=1800 BAF+BEF+AFE+ABE=3600 AFE+ABE=1800 又AFE+5+6=1800 5+6=3+4 5=

20、4即EAF=ABD(2)FM=FN 证明:如图2 由(1)可知EAF=ABD 又AFB=GFA AFGBFA AGF=BAF 又MBF=BAFMBF=AGF 又AGF=MBG+BMG MBG=BMG BG=MGAB=AD ADB=ABD=EAF又FGA=AGDAGFDGAAF=AD设GF=2a AG=3aGD=aFD=aCBD=ABD ABD=ADBCBD=ADBBEAD设EG=2kBG=MG=3k 过点F作FQED交AE于QGQ=EG= MQ=3k+=FQEDFM=FN7、(2013钦州)如图,在平面直角坐标系中,O为坐标原点,抛物线y=x2+2x与x轴相交于O、B,顶点为A,连接OA(1)

21、求点A的坐标和AOB的度数;(2)若将抛物线y=x2+2x向右平移4个单位,再向下平移2个单位,得到抛物线m,其顶点为点C连接OC和AC,把AOC沿OA翻折得到四边形ACOC试判断其形状,并说明理由;(3)在(2)的情况下,判断点C是否在抛物线y=x2+2x上,请说明理由;(4)若点P为x轴上的一个动点,试探究在抛物线m上是否存在点Q,使以点O、P、C、Q为顶点的四边形是平行四边形,且OC为该四边形的一条边?若存在,请直接写出点Q的坐标;若不存在,请说明理由考点:二次函数综合题3718684专题:探究型分析:(1)由y=x2+2x得,y=(x2)22,故可得出抛物线的顶点A的坐标,令x2+2x

22、=0得出点B的坐标过点A作ADx轴,垂足为D,由ADO=90°可知点D的坐标,故可得出OD=AD,由此即可得出结论;(2)由题意可知抛物线m的二次项系数为,由此可得抛物线m的解析式过点C作CEx轴,垂足为E;过点A作AFCE,垂足为F,与y轴交与点H,根据勾股定理可求出OC的长,同理可得AC的长,OC=AC,由翻折不变性的性质可知,OC=AC=OC=AC,由此即可得出结论;(3)过点C作CGx轴,垂足为G,由于OC和OC关于OA对称,AOB=AOH=45°,故可得出COH=COG,再根据CEOH可知OCE=COG,根据全等三角形的判定定理可知CEOCGO,故可得出点C的坐标

23、把x=4代入抛物线y=x2+2x进行检验即可得出结论;(4)由于点P为x轴上的一个动点,点Q在抛物线m上,故设Q(a,(a2)24),由于OC为该四边形的一条边,故OP为对角线,由于点P在x轴上,根据中点坐标的定义即可得出a的值,故可得出结论解答:解:(1)由y=x2+2x得,y=(x2)22,抛物线的顶点A的坐标为(2,2),令x2+2x=0,解得x1=0,x2=4,点B的坐标为(4,0),过点A作ADx轴,垂足为D,ADO=90°,点A的坐标为(2,2),点D的坐标为(2,0),OD=AD=2,AOB=45°;(2)四边形ACOC为菱形由题意可知抛物线m的二次项系数为,

24、且过顶点C的坐标是(2,4),抛物线的解析式为:y=(x2)24,即y=x22x2,过点C作CEx轴,垂足为E;过点A作AFCE,垂足为F,与y轴交与点H,OE=2,CE=4,AF=4,CF=CEEF=2,OC=2,同理,AC=2,OC=AC,由反折不变性的性质可知,OC=AC=OC=AC,故四边形ACOC为菱形(3)如图1,点C不在抛物线y=x2+2x上理由如下:过点C作CGx轴,垂足为G,OC和OC关于OA对称,AOB=AOH=45°,COH=COG,CEOH,OCE=COG,又CEO=CGO=90°,OC=OC,CEOCGO,OG=4,CG=2,点C的坐标为(4,2)

25、,把x=4代入抛物线y=x2+2x得y=0,点C不在抛物线y=x2+2x上;(4)存在符合条件的点Q点P为x轴上的一个动点,点Q在抛物线m上,设Q(a,(a2)24),OC为该四边形的一条边,OP为对角线,=0,解得x1=6,x2=4,P(6,4)或(2,4)(舍去),点Q的坐标为(6,4)点评:本题考查的是二次函数综合题,涉及到抛物线的性质、菱形的判定与性质、平行四边形的性质等知识,难度适中8、(2013雅安)如图,已知抛物线y=ax2+bx+c经过A(3,0),B(1,0),C(0,3)三点,其顶点为D,对称轴是直线l,l与x轴交于点H(1)求该抛物线的解析式;(2)若点P是该抛物线对称轴

26、l上的一个动点,求PBC周长的最小值;(3)如图(2),若E是线段AD上的一个动点( E与A、D不重合),过E点作平行于y轴的直线交抛物线于点F,交x轴于点G,设点E的横坐标为m,ADF的面积为S求S与m的函数关系式;S是否存在最大值?若存在,求出最大值及此时点E的坐标; 若不存在,请说明理由考点:二次函数综合题专题:综合题分析:(1)根据函数图象经过的三点,用待定系数法确定二次函数的解析式即可;(2)根据BC是定值,得到当PB+PC最小时,PBC的周长最小,根据点的坐标求得相应线段的长即可;(3)设点E的横坐标为m,表示出E(m,2m+6),F(m,m22m+3),最后表示出EF的长,从而表

27、示出S于m的函数关系,然后求二次函数的最值即可解答:解:(1)由题意可知:解得:抛物线的解析式为:y=x22x+3;(2)PBC的周长为:PB+PC+BCBC是定值,当PB+PC最小时,PBC的周长最小,点A、点B关于对称轴I对称,连接AC交l于点P,即点P为所求的点AP=BPPBC的周长最小是:PB+PC+BC=AC+BCA(3,0),B(1,0),C(0,3),AC=3,BC=;(3)抛物线y=x22x+3顶点D的坐标为(1,4)A(3,0)直线AD的解析式为y=2x+6点E的横坐标为m,E(m,2m+6),F(m,m22m+3)EF=m22m+3(2m+6)=m24m3S=SDEF+SA

28、EF=EFGH+EFAC=EFAH=(m24m3)×2=m24m3;S=m24m3=(m+2)2+1;当m=2时,S最大,最大值为1此时点E的坐标为(2,2)点评:此题主要考查了待定系数法求二次函数解析式以及二次函数的最值,根据点的坐标表示出线段的长是表示出三角形的面积的基础9、(2013达州) 如图,在直角体系中,直线AB交x轴于点A(5,0),交y轴于点B,AO是M的直径,其半圆交AB于点C,且AC=3。取BO的中点D,连接CD、MD和OC。(1)求证:CD是M的切线;(2)二次函数的图象经过点D、M、A,其对称轴上有一动点P,连接PD、PM,求PDM的周长最小时点P的坐标;(3

29、)在(2)的条件下,当PDM的周长最小时,抛物线上是否存在点Q,使?若存在,求出点Q的坐标;若不存在,请说明理由。解析:(1)证明:连结CM.OA 为M直径,OCA=90°.OCB=90°.D为OB中点,DC=DO.DCO=DOC.(1分)MO=MC,MCO=MOC.(2分)DCM=DCO+MCO=DOC+MOC=DOM=90°.(3分)又点C在M上, DC是M的切线.(4分)(2)解:在RtACO中,有OC=.又A点坐标(5,0), AC=3,OC=4.tanOAC=.解得 OB=.又D为OB中点,OD=. D点坐标为(0,).(5分)连接AD,设直线AD的解析

30、式为y=kx+b,则有j解得直线AD为y=-x+.二次函数的图象过M(,0)、A(5,0),抛物线对称轴x=.(6分)点M、A关于直线x=对称,设直线AD与直线x=交于点P,PD+PM为最小.又DM为定长,满足条件的点P为直线AD与直线x=的交点.(7分)当x=时,y=-+=.故P点的坐标为(,).(8分)(3)解:存在.SPDM=SDAM-SPAM=AM·yD-AM·yP=AM(yD-yp).SQAM=AM·,由(2)知D(0,),P(,),×(-)=yQ 解得yQ=±(9分)二次函数的图像过M(0,)、A(5,0),设二次函数解析式为y=a(x-)(x-5).又该图象过点D(0,),a×(-)×(-5)=,a=.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论