

下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、函数的零点教学设计精心整理常州市第一中学孔祥武一? ?设计思想与理念本课的教学设计是按照“教师为主导,学生为主体,课本为主 线”的原则而设计的教师在充分分析学生已有知识水平和思 维能力的基础上,为学生创设探索的情境,通过问题串,指引探 索的途径,通过环环相扣问题链激发学生的求知欲、探索欲,引 导学生不断地提出新问题,解决新问题.、尹I I/ I* I二教材分析:1.1.?内容分析函数f(x)的零点, ,是中学数学的一个重要概念, ,从函数值与自变 量对应的角度看,就是使函数值为0的实数X;从方程的角度看,即 为相应方程f(x)=0的实数根;从函数的图像角度看,函数的零点就 是函数f(x)与X轴
2、交点的横坐标. .函数的零点从不同的角度,将函数 与方程,数与形有机的联系在一起,体现的是函数知识的应用.! j.j x * i, y | I学习函数零点存在性定理可为二次函数实根分布打下基础,并 为下一节内容二分法求方程近似解提供理论支持.在讲授本节内容时更多要渗透函数与方程思想、转化与化归思想、数形结合的 思想方法2.2. ? ?学情分析:初学者大多不清楚为什么要研究函数的零点,因为在此之前他 们都能用公式法直接求方程的根.教学时可通过举例让学生知道,- -来源网络精心整理有许多方程都不能用公式法求解,只能把方程交给函数,转化为 考察相应函数的零点问题,从动态的角度来研究,借助形的角度 来
3、研究数的问题.本人执教的班级是一中的教改班,学生层次较高,简单引用教 材上的例题学生会觉得提不起兴趣,因此尝试在立足教材的基础 上提出一些有挑战性的问题,调动学生的积极性,引导学生自主 发现,自我建构知识.3.?3.?教材处理本节课从学生熟悉的二次函数与二次方程入手,借助对图象 的观察获得二次函数的零点与一元二次方程根的关系,并将这种 关系推广到了一般情形体会函数与方程之间的转化关系.X |:/ y 对于函数零点判断定理,教师要引导学生从特例中发现感悟 这一定理,在给出这个定理之后,还需要围绕定理作一些深入的 剖析,引导学生多画图,讨论定理逆命题的真假,加深对定理的 理解及应用.重点:函数的零
4、点存在性定理的理解及运用-.i难点:体会函数的零点与方程的根之间的联系; 三教学目标设计1 1知识与技能(1) 理解函数(结合二次函数)零点的概念.(2) 理解零点存在性定理的判定条件,会判断函数在某区间上是 否存在零点. .2.2.过程与方法- -来源网络精心整理能够理解函数零点与方程的根之间的关系,能够结合反例找 到不间断函数在某个区间上存在零点的判断方法.3.3. 情感、态度与价值观x22x一3 = 0的根与函数 厂x22x一3之间有什么联系?【生】:从图象上看,方程的根就是函数图象与x轴交点的横 坐标 【师】:很好,方程X2-2X-3=0可看作函数y=x2-2x-3函数值为 0 0 时
5、特殊情形,函数与方程之间似乎有某种联系,-1,3是方程x22x7=0的两 根,那么是函数 厂X2-2X-3的什么呢?为了表述方便, 我们给它一 个名称, 把-1,3称为函数y=x2-2x-3的零点.(.(板书课题) )设计意图:单刀直入,从学生熟悉的二次函数与二次方程入手, 通过对图象的观察获得二次函数的零点与一元二次方程根的关 - -来源网络在函数与方程的联系中体验数形结合思想和转化思想的意 义和价值,发展学生对变量数学的认识,体会函数知识的核心作 用体验数学内在美,激发学习热情,培养学生创新意识和科学精 神.四.教学过程设计1 1 情境问题: 问题一:函数y =x2-2X-3图象与x轴交点
6、坐标(-1(-1 , 0 0)( 3 3, 0 0):你是怎样得到的, :令八0解出来的 问题二:方程:2【生】:【师】yX精心整理系,给学生搭自然类比引出概念零点知识是陈述性知识,关键 不在于让学生提出这个概念,而在于理解提出零点概念的作用一 沟通函数与方程的关系弓I入函数的零点的概念一是突出这一 转化的思想,二是表述起来更方便.2 2 .建构数学问题三:类似的,函数y = f(x)的零点又该怎样定义?【生】:令八0,解出f(x)=O的根便是函数的零点. .函数的零点:1 1、定义:一般地,我们把使函数-f(x)的值为 0 0 的实数x称为函 数八f(x)的零点. .【师】:函数的零点从本质
7、上来说是什么呢?一张纸还是一支 笔啊?【生】:零点是一个实数.【师】:很好,去掉修饰语,实数x称为零点我们不妨这么记 忆,零点不是点,海马不是马 2 2、 说明:(1) 函数的零点不是点,是个实数 (2)函数的零点就是相应方程的根,也是函数图象与x轴交点的 横坐标. .函数的零点问题二方程的根的问题二图象与x轴的交点问题设计意图:围绕零点概念的剖析,帮助学生理解零点的本质,体会函数的零点与相应方程的根以及函数图像之间的相互转化的 思想.- -来源网络精心整理问题四:方程3456X2一3458X仁0有没有实数根?【生】:有,用D = 34582- 4? 34560计算,可以估算.【师】:很好,还
8、有别的做法吗?【生】:设f(x) =3456x2-3458X 1,f(1) = -1:0,因图像开口向上,所 以f(x) =3456x2-3458x 1的图像和x轴必有两个交点.【师】:成功的关键在于把方程交给了函数,从函数角度来看 问题. .变化:在区间(1,2)上有根吗?【生】:f(1)=-1,f (2) 0,二次函数图像必定穿越x轴,在区间(1,2)上有一个根.变化:在区间(0,1)上有根吗?【生】:f一1,f(0)“,函数图像必定穿越x轴,在区间(0,1)上有 一个根.设计意图:有意设计了一个不便于从代数角度求根的一元二次方程,“逼迫”学生另辟蹊径,把方程转化为函数,从“形”的 角度,
9、来考察二次方程在区间上是否有根,渗透函数与方程思想, 数学结合的思想. .同时让学生感受端点函数值异号,图像连续,函 数有零点,这便是零点存在性定理的“雏形,为下面引出零点 存在性定理埋下伏笔. .问题五:若函数y = f(x)在区间a,b 上满f(a) f(b) 0, ,则函数y = f (x)在区间(a,零点吗?试举例说明. .精心整理【生 1 1】 : 不一定, 八丄在区间(一1,1)上满足条件,却没有零点. .x【师】: 加一个怎样的条件就能保证上述函数y = f(x)在区间(a,b)上一定有零教师学生自己画图论证.- -来源网络足一定有- -来源网络点?【生】:感觉只要函数y = f
10、(x)在区间a,b上连在一起,不间断就 可以了.引出零点存在性定理设计意图:通过问题四学生感觉似乎函数在区间上端点函数值 异好,就有零点,教师适时地提出问题五,顺其自然把问题推向 纵深,引导学生画图论证,自我探究,寻找反例,接下来定理的 引出便是自然的,水到渠成的.零点存在定理:一般地,若函数y = f(x)在区间a,b上的图象是一条X |:/ y 不间断的曲线,且f(a) f(b):0,则函数y = f(x)在区间(a,b)上有零点. 问题六( (剖析概念系列问) ):【师】:学习了这个定理,你有哪些不明白的地方.(设计意图引导学生自主发现问题)【生】:区间从a,b变化为(a,b),为什么?
11、【师】:使零点位置更精确!第一个区间a,b能改为区间(a,b)吗?【生】:不可以,如函数fgJKZ1),l-1,x=1【师】何谓“有零点”?【生】:至少有一个零点精心整理【师】(能逆向吗?)一般地,若函数八f(x)在区间a,b上的图象是一条不间断的曲线,若函数y = f(x)在区间(a,b)上有零点,贝U f(a) f(b) 0?能举例吗?【生】:二次函数f(x)d_4/在区间3,4上有零点却不满足. -【师】:不间断的单调函数y = f(x)廿/ * 在区间a,b上有f(a) f(b) cO,则函数y = f(x)在区间丿(a,b)上有几个零点?【生】:1 1 个. .I IJJ J / /
12、【师】:变式:二次函数y =f(x)在区间a,b上有f(a) f(b):O, ,则函数y = f(x)在区间(a,b)上有几个零点?【生】:1 1 个(这是由二次函数自身的形状决定,引导学生画图 感受)设计意图:在给出这个定理之后,还需要围绕定理作一些深 入的剖析,诸如:满足定理的条件就有零点,不满足定理的条件 是否就没有零点,函数在区间上有零点是否一定有f(a)f(b):O,引导 学生多画图,结合我们熟悉的二次函数的零点讨论定理逆命题的 真假,加深对定理的理解,为灵活运用奠定基础这样达到完成 本节课的知识与技能目标的目的,同时也突出了重点,3 3、典型例题:例题 1 1:求证:函数f(x)=
13、x3X21在区间(-2,-1)存在零点.解答:f(2)f(:0, ,函数f(x)=x3x21在区间(-2,-1)上不间断. . 强调:函数f(xx3x21在区间(-2,-1)上不间断. .注重解题规范.- -来源网络精心整理变式 1 1:求证:方程x3=4x2在区间(一2,0)上至少有两个实根解:令f(x) =X34x2,f (-2) =-8+8-2 0,f(0)=-20,f(-1)=1A0, 又函数f(x)=x3-4x-2在区间(-2,0)上连续不间断,f(x)=x3-4x-2在区间(-2,-1),(-1,0)上都至少有一个根,所以得证.教师点评:把方程的根的问题转化为相应函数图象的零点问题
14、 处理.设计意图:例题 1 1 设计了一个三次函数的例子,不能像通常二 次函数那样从代数角度直接求解函数零点,需要结合零点存在性 定理解题,属于浅层次的模仿运用,让学生感悟零点存在性定理 是判断函数有无零点的又一种方法变式训练把问题推向高潮,X |:/ y 首先要把方程根的问题转化为函数的零点问题,训练学生函数与 方程思想.当然变式 1 1 有一定难度,可根据学生层次选择.例题 2 2:函数f(x)=l nx x-4有零点的区间为(k,k 1) k Z,求k的值.分析 1 1:尝试直接应用定理解题.函数f(x) =1 n x x -4,f (2) = In 2 - 2:0,f (3) = In
15、3 -1 0, 函数f (x) = In x x 4在 区间(k,k 1) k Z上单调增,故k= 2分析 2 2:把问题转化为我们熟悉的函数图像的交点问题.如x 4与y2F nx,观察图像可得零点在区间(1,4)当中,至于根到底在哪个区间, 依靠图像本省还不有精确,需要把问题交给代数,考查(1,4)中的整x= 2时寸,=2,yl n2:1,x=3时,力=1,y2Tn3 1, - -来源网点络- -来源网络精心整理通过精确比较,根位于区间(2,3)要进行细化. .纠正学生的常见误区:直接f (k),f(k+1) = (ln k + k 4)(ln( k +1) + (k+1) 4 c 0的做法
16、不对,属于认为有零点,便有端点值异好,若看出单调增,便可以这样使用. .逐一检验整数点。归纳:函数零点的求解与个数的判断:(1)(代数法)转化为相应方程的实数根问题;( (能求则求) ),(2)(几何法)转化为函数的图象交点问题;(3)利用零点存在性定理解决.设计意图:设计一个入口较宽的,有一定挑战性的,一题多 解的例题,让学生正确理解零点存在性定理使用误区和注意事项, 并培养学生数形结合的意识,把陌生的问题转化为熟悉问题,把yI J /卜数的问题转化为形的问题,当依靠形说不清时再次把形的问题转 化为数,感受数学解题其实就是一个不断转化的过程.4 4、当堂训练:(备用)LiLi1 1、 设函数
17、f(x8lXx/11,则函数g(x)=f(x)+的零点为. i fJ! j.j、* i答:3可以直接求根,也可以作图像!2 2、 函数f(x)=xlgx-1有零点的区间为(k,k 1) k Z,则k的值为.2 2igxJ, ,转化为熟知的图像的交点,最后细化!x3 3、 方程3xlog2X=0在区间丄1内实数根的个数为.1 14法一、转化为两个图像的交点个数.法二、函数单调增,用f(a) f(b) 0- -来源网络精心整理设计意图:争对课上的重点难点内容,当堂巩固训练,变式训练, 课内时间可能来不及,看情况备用5 5、 课堂小结:(引导学生自己总结,自我建构)(1 1)函数的零点概念是什么?函
18、数的零点问题二方程的根的问题二图像与x轴交点问题函数的零点个数的判断方法有哪些?(1 1)求出相应方程的实数根; (2 2)转化为函数的图象交点 问题; (3 3)利用零点存在性定理(3 3)本节课运用了哪些数学思想方法?函数与方程思想、转化与化归思想、数形结合思想/ I(/设计意图在学生谈收获,谈体验的过程中,教师将本节课的 内容回顾总结,概况升华,进一步优化学生的认知结构,把课堂 所学的知识与方法较快转化为学生的素质,也更进一步培养学生 的归纳概括能力.6 6、 课外作业:一中配套课时训练第 3333 课时函数的零点开课反思常州市第一中学孔祥武本节课好的地方:1.以问题串组织教学,一步步引
19、导学生自主建构概念,6 个大问题把整节课知识点串了起来.这样的课堂是高效的,学生在思考中发现,在探究中感悟.2.因为学生层次很好,(一中教改班),这节课我设计时立足放手让学生来说,把舞台交给学生充分体现教师 为主导,学生为主体的新课程理念许多概念的反例都是学生自己来举的,听课老师都觉得学生表现得很让 人吃惊这里学生的主动性积极性得到调动学生的大胆质疑,大声回答让人佩服,这样的课堂正是我们老- -来源网络精心整理师希望看到的,这样的学生正是我们老师希望培养的.3.零点存在性定理讲的比较细致入微,嚼得有滋有味,剖析得比较透彻,是本节课的亮点.零点存在性问题本身是充分的,有局限性的.“剖析问题(能逆
20、向吗)一般地,若函数y = f(x)在区间a,b上的图象是一条不 间断的曲线,若函数 八f(x)在区间(a,b)上有零点则f(a).f(b):O?能 举例吗?”和变式 2 2 都在研究定理逆向方面的问题防止学生理 解发生偏差.定理的正向,逆向剖析,让学生对定理加深理解, 使得学生对定理理解更全面.4.本节课教态很自然, 始终面带微笑,不慌不忙,娓娓道来,不太像自己平时严厉的作风, 给人以亲近的感觉, 学生似乎也被感染了,师生配合较好,还要坚持.需要改进的方面:1 1 给出函数零点定义时提出问题:学习了零点定义要注意什么,X |:/ y 问题太大,太空.可改为:学习了零点,你能告诉人家零点是什 么吗?可能更具体一些.2.2. 零点不是点,黑马不一定是马说法不准确.改为零点不是点,X,jf 海马不是马可能较好.3.3. 零点存在性定理的生成亦可以设计一些活动让学生动手探究, 揭示定理(1 10 0分钟)已知函数y = f x
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 急性左心衰竭临床护理
- 学前教育课程的组织形式
- 劳动教育与爱国卫生运动
- 面部护理特辑 清真保湿有效保养
- 常见心血管病健康教育
- 小儿鼻窦炎的中医护理
- 跟腱修补术后护理查房
- 幼儿园暑期防中暑安全教育指南
- 手帐创意绘画课件
- 如何有效实施《义务教育语文课程标准(2025年版)》
- 作业过程危害辨识与风险评估技术标准
- 2024年02月福建2024年兴业银行福州分行金融科技人才招考笔试历年参考题库附带答案详解
- 2025年安庆横江集团有限责任公司招聘笔试参考题库含答案解析
- 压力容器生产单位质量安全总监、安全员考试题含答案
- 《消防安全操作规程》
- 中职心理健康第五课认识情绪管理情绪
- 《电气控制系统设计与装调》教案 项目六 任务二:顺序启动同时停止线路设计与安装调试
- DB43T 1491-2018 贵铅中砷、铋、铜和锑量的测定 电感耦合等离子体发射光谱法
- 保密法实施条例培训
- 泰山产业领军人才申报书
- 《沿海滩涂盐碱地机插水稻高产栽培技术规程(报批稿)》编制说明
评论
0/150
提交评论