专题、圆形有界磁场中“磁聚焦”规律(有答案)_第1页
专题、圆形有界磁场中“磁聚焦”规律(有答案)_第2页
专题、圆形有界磁场中“磁聚焦”规律(有答案)_第3页
专题、圆形有界磁场中“磁聚焦”规律(有答案)_第4页
专题、圆形有界磁场中“磁聚焦”规律(有答案)_第5页
免费预览已结束,剩余6页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、专题、圆形有界磁场中“磁聚焦”的相关规律练习当圆形磁场的半径与圆轨迹半径相等时,存在两条特殊规律;规律一:带电粒子从圆形有界磁场边界上某点射入磁场,如果圆形磁场的半径与圆轨迹半径相等,则粒子的出射速度方向与圆形磁场上入射点的切线方向平行,如甲图所示。规律二:平行射入圆形有界磁场的相同带电粒子,如果圆形磁场的半径与圆轨迹半径相等, 则所 有粒子都从磁场边界上的同一点射出, 并且出射点 的切线与入射速度方向平行,如乙图所示。【典型题目练习】1 .如图所示,在半彳5为R的圆形区域内充满磁感应强度为B的匀强磁场,MN是一竖直放置的感光板.从圆形磁场最高点 P垂直磁场射入大 量的带正电,电荷量为 q,质

2、量为m,速度为v的粒子,不考虑粒子间 的相互作用力,关于这些粒子的运动以下说法正确的是()A .只要对着圆心入射,出射后均可垂直打在MN上B.对着圆心入射的粒子,其出射方向的反向延长线不一定过圆心C.对着圆心入射的粒子,速度越大在磁场中通过的弧长越长,时间也越长D.只要速度满足丫=却,沿不同方向入射的粒子出射后均可垂直打在MN上m2.如图所示,长方形 abed的长ad=0.6m ,宽ab=0.3m , O、e分另J是ad、bc的中点,以e为圆心eb为半径的四分之一圆弧和以 O为圆心Od为半径的四分之一 圆弧组成的区域内有垂直纸面向里的匀强磁场(边界上无磁场)磁感应强度B=0.25T。一群不计重

3、力、质量 m=3X 10-7kg、电荷量 q=+2 M03C的带正电粒子以速度 v=5X102m/s沿垂直ad方向且垂 直于磁场射人磁场区域,则下列判断正确的是()A.从Od边射入的粒子,出射点全部分布在Oa边B.从aO边射入的粒子,出射点全部分布在ab边C.从Od边射入的粒子,出射点分布在 ab边D.从ad边射人的粒子,出射点全部通过b点3 .如图所示,在坐标系 xOy内有一半径为a的圆形区域,圆心坐标为Oi (a, 0),圆内分布有垂直纸面向里的匀强磁场,在直线y=a的上方和直线x=2a的左侧区域内,有一沿 x轴负方向的匀强电场,场强大小为E, 一质量为m、电荷量为+q (q>0)的

4、粒子以速度 v从O点垂直于磁场方向射入,当入射速度方向沿x轴方向时,粒子恰好从 O1点正上方的A点射出磁场,不计粒子重力,求:(1)磁感应强度B的大小;(2)粒子离开第一象限时速度方向与y轴正方向的夹角;(3)若将电场方向变为沿 y轴负方向,电场强度大小不变,粒子以速度 v从。点垂直于磁 场方向、并与x轴正方向夹角9=300射入第一象限,求粒子从射入磁场到最终离开磁场的总圆形有界磁场中“磁聚焦”第11页时间to4 .如图所示的直角坐标系中,从直线 x=-210到y轴区域存在两个大小相等、方向相反的有界匀强电场,其中 x轴上方的电场方向沿 y轴负方向,x轴下方的电场方向沿 y轴正方向。续以相同速

5、度 v0沿x轴正方向射入电场。从 At和匀强电场的电场强度 E的大小。在电场左边界从 A (-210,-1。)点到C (-21°, 0) 点区域内,连续分布着电量为 +q、质量为m的 粒子。从某时刻起,A点到C点间的粒子依次连点射入的粒子恰好从 y轴上的A' (0, -1。)点沿 沿x轴正方向射出电场, 其轨迹如图所示。不计 粒子的重力及它们间的相互作用。(1)求从AC间入射的粒子穿越电场区域的时间(2)求在A、C间还有哪些坐标位置的粒子通过电场后也能沿x轴正方向运动?(3)为便于收集沿x轴正方向射出电场的所有粒子,若以直线x=2l0上的某点为圆心的圆形磁场区域内,设方t分布

6、垂直于xOy平面向里的匀强磁场,使得沿 x轴正方向射出电场的粒子经磁场偏转后,都能通过x=2l0与圆形磁场边界的一个交点。则磁场区域最小半径是多大?相应的磁感应强度 B是多大?5 .如图所示,在xoy坐标系中分布着三个有界场区:第一象限中有一半径为r=0.1m的圆形磁场区域,磁感应强度 Bi=1T,方向垂直纸面向里,该区域同时与 x轴、y轴相切,切点分 别为A、C;第四象限中,由 y轴、抛物线FG ( y =10x2 +x0.025,单位:m)和直线DH (y=x0.425,单位:m)构成的区域中,存在着方向竖直向下、强度 E=2.5N/C的匀 强电场;以及直线DH右下方存在垂直纸面向里的匀强

7、磁场B2=0.5T。现有大量质量m=ixi0-6kg (重力不计),电量大小为q=2X10-4C,速率均为20m/s的带负电的粒子从 A处垂直磁场 进入第一象限,速度方向与 y轴夹角在0至1800之间。(1)求这些粒子在圆形磁场区域中运动的半径;(2)试证明这些粒子经过 x轴时速度方向均与 x轴垂直;(3)通过计算说明这些粒子会经过y轴上的同一点,并求出该点坐标。y/m_ ,H MxMxxxxXXXxXXX6 .如图所示,真空中一平面直角坐标系 xOy内,存在着两个边长为 L的正方形匀强电场区 域I、n和两个直径为 L的圆形磁场区域出、Wo电场的场强大小均为 巳 区域I的场强方 向沿X轴正方向

8、,其下边界在 X轴上,右边界刚好与区域n的边界相切;区域n的场强方向沿y轴正方向,其上边界在x轴上,左边界刚好与刚好与区域W的边界相切。磁场的磁感应强度大小均为2 112mE ,区域出的圆心坐标为( qL0,上)、磁场方向垂直于 xOy平面向外;2区域IV的圆心坐标为(0, -2)、磁场方向垂直于xOy平面向里。两个质量均为 m、电荷量均为q的带正电粒子 M、N ,在外力约束下静止在坐标为(-3 L , - )> ( -L, 2M L )2224的两点。在x轴的正半轴(坐标原点除外)放置一块足够长的感光板,板面垂直于xOy平面。将粒子M、N由静止释放,它们最终打在感光板上并立即被吸收。

9、不计粒子的重力。求:(1)粒子离开电场I时的速度大小。(2)粒子M击中感光板的位置坐标。(3)粒子N在磁场中运动的时间。7 .如图所示,半圆有界匀强磁场的圆心Oi在x轴上,OOi距离等于半圆磁场的半径,磁感应强度大小为 Bi。虚线MN平彳T x轴且与半圆相切于 P点。在MN上方是正交的匀强电场 和匀强磁场,电场场强大小为 E,方向沿x轴负向,磁场磁感应强度大小为B2o B1, B2方向均垂直纸面,方向如图所示。有一群相同的正粒子,以相同的速率沿不同方向从原点O射入第I象限,其中沿x轴正方向进入磁场的粒子经过 P点射入MN后,恰好在正交的电磁 场中做直线运动,粒子质量为 m,电荷量为q (粒子重

10、力不计)。求:(1)粒子初速度大小和有界半圆磁场的半径。(2)若撤去磁场 B2,则经过P点射入电场的粒子从 y轴出电场时的坐标。(3)试证明:题中所有从原点 O进入第I象限的粒子都能在正交的电磁场中做直线运动。8 .如图甲所示,真空中有一个半径 r=0.5m的圆形磁场,与坐标原点相切,磁场的磁感应强 度大小B=2.0X10-3t,方向垂直于纸面向里,在 x=r处的虚线右侧有一个方向竖直向上的宽度L=0.5m的匀强电场区域,电场强度E=1.5M03N/C,在x=2m处有一垂直x方向的足够长的荧光屏,从。点处向不同方向发射出速率相同的比荷9=1.0Ml09C/kg带负电的粒子,粒m子的运动轨迹在纸

11、面内。 一个速度方向沿y轴正方向射入磁场的粒子M,恰能从磁场与电场的相切处进入电场。不计重力及阻力的作用。求:(1)粒子M进入电场时的速度。(2)速度方向与y轴正方向成30° (如图中所示)射入磁 场的粒子N,最后打到荧光屏上,画出粒子N的运动轨迹并 求该发光点的位置坐标。9 .如图甲所示,质量m=8.0 M0- 25kg ,电荷量q=1.6 1015C的带正电粒子从坐标原点。处沿xOy平面射入第一象限内,且在与 x方向夹角大于等于 30 °的范围内,粒子射入时的速度方 向不同,但大小均为 V0=2.0 107m/s。现在某一区域内加一垂直于 xOy平面向里的匀强磁场y轴平

12、行的荧光屏 MN上,并且(兀=3.1锵:磁感应强度大小 B=0.1T ,若这些粒子穿过磁场后都能射到与 当把荧光屏MN向左移动时,屏上光斑长度和位置保持不变。(1)粒子从y轴穿过的范围。(2)荧光屏上光斑的长度。(3)打到荧光屏 MN上最高点和最低点的粒子运动的时间差。(4)画出所加磁场的最小范围(用斜线表示)。参考答案1.当v,B时,粒子所受洛伦兹力充当向心力,做半径和周期分别为匀速圆周运动;只要速度满足v=qBR时,在磁场中圆周运动的半径与圆形磁场磁场的半径 m相等,不同方向入射的粒子出射后均可垂直打在MN上,选项D正确。mv2.由R =4 =0.3m知,在磁场中圆周运动的半径与圆形磁场磁

13、场的半径相等, qB从Oa入射的粒子,出射点一定在 b点;从Od入射的粒子,经过四分之一圆周后到达be,由于边界无磁场,将沿be做匀速直线运动到达 b点;选项D正确。3.解析:(1)当粒子速度沿 x轴方向入射,从A点射出磁场时,几何关系知:r=a;2由qvB = m匕知:B =rmv mvqr qa(2)从A点进入电场后作类平抛运动;沿水平方向做匀加速直线运动:2EqamVx沿竖直方向做匀速直线运动:vy=V0 ;,粒子离开第一象限时速度与y轴的夹角:tan 82Eqamv2VxvyOO1PO2构成菱形,6 3v粒子在电场中做匀变速运动的时间:, 2mvt2 =;Eq(3)粒子从磁场中的 P点

14、射出,因磁场圆和粒子的轨迹圆的半径相等,故粒子从P点的出射方向与 OOi平行,即与y轴平行;轨迹如图所示;粒子从。到P所对应的圆心角为01=600,粒子从。到P用时:t13由几何知识可知,粒子由P点到x轴的距离S=asin01 = a;12粒子磁场和电场之间匀速直线运动的时间:t3 = 2(aS) =(2 拘a ;vv粒子由P点第2次进入磁场,从 Q点射出,PO1QO3构成菱形;由几何知识可知Q点在x轴上,即为(2a, 0)点;粒子由P到Q所对应的圆心角 &=120°,粒子从P到Q用时:T 2 二at4 二;3 3v,粒子从射入磁场到最终离开磁场的总时间:t=t112t3t4

15、 二W"a 2mvoEq4.解析:(1)带电粒子在电场中做类平抛运动,沿水平方向匀速运动,有+2l0t 二V0从A点入射的粒子在竖直方向匀加速运动,由轨迹对称性性可知loi Eq t(2)(2)设距C点为Ay处入射的粒子通过电场后也沿x轴正方向,第一次达水平方向以口0飞竖直方向;:y =qE(:t)22 mx轴用时t,有欲使粒子从电场射出时的速度方向沿x轴正方向,有2lo = n 2Ax(n =i, 2,3,)解得:.旷=,更也)2 n 2m v0即在A、C间入射的粒子通过电场后沿1x轴正万向的 y坐标为y =l0(n =1 , 2n3,)n=1 时,粒子射出的坐标为n=2 时,粒子

16、射出的坐标为yi - lo_ 1,y2 - -二 l04n4时,沿x轴正方向射出的粒子分布在则磁场的最小半径为 R = L =迫28若使粒子经磁场偏转后汇聚于一点,粒子的运动半径与磁场圆的半径相等(如图)轨迹圆与磁场圆相交,四边形PO1QO2为棱形,由qv0B =2mvo得:B=8m05ql0yi到y2之间(如图)yi到y2之间的距离为2vmv 5.解析:(1)由 qvBi =m一知:R=0.1m RBi(2)考察从A点以任意方向进入磁场的的粒子,设其从K点离开磁场,。1和。2分别是磁场区域和圆周运动的圆心,因为圆周运动半径和磁场区域半径相同,因此OiAO 2K为菱形,离开磁场时速度垂直于 O

17、2K,即垂直于x轴,得证。(3)设粒子在第四象限进入电场时的坐标为( x, yi),离开电场时的坐标为(x, y2),离开电场时速度为V2;1cle在电场中运动过程,动能th理:Eq(y2 -y1) =-mv2mv22其中 y1 =10x2 +x0.0025, y2 =x0.425 解得 v2=100x在B2磁场区域做圆周运动的半径为V2R2,有 qv2B2 =m-R2解得R2=x因为粒子在B2磁场区域圆周运动的半径刚好为 x坐标值,则粒子做圆周运动的圆心必在y轴上;又因V2的方向与DH成450,且直线HD与y轴的夹角为450,则所有粒子在此磁场中恰好经过四分之一圆周后刚好到达H处,H点坐标为

18、(0, - 0.425)。126.解析:(1)粒子在区域I中运动,由动能定理得EqL=mv222EqLm解得V0 二mv0(2)粒子在磁场中做匀速圆周运动,有qv0B=m上,又有B=2r2mE /口,解得r =qLqB因M运动的轨道半径与圆形磁场区域的半径相同,故 周期后经过原点进入磁场IV ,再运动四分之一个周期后平行于场n后做类平抛运动。m在磁场in中运动四分之一个x轴正方向离开磁场,进入电假设M射出电场后再打在x轴的感光板上,则M在电场n中运动的的时间t v0(1分)沿电场方向的位移1 -1 Eq / ly = 2at =2 布 (v;)(2分)假设成立,运动轨迹如图所示。沿电场方向的速

19、度vy =at = . qEL,2min .V、,1速度的偏向角 tan 1 =二一 v02设射出电场n后沿 x轴方向的位移xi,有 x12 4 tan 二M击中感光板的横坐标 x =2 +L +4=2L ,位置坐标为(2L, 0)(1分)(3) N做圆周半径与圆形磁场区域的半径相同,分析可得N将从b点进入磁场出,从原点。离开磁场出进入磁场IV,然后从d点离开磁场IV,沿水平方向进入电场H。轨迹如图。史L在磁场出中,由几何关系cos?- 上则9=300,圆弧对应的圆心角2()=1800- 300=1500粒子在磁场中运动的周期T粒子在磁场出中运动的时间IV中运动时间相等;III由对称关系得粒子

20、在磁场ID、故粒子在磁场中运动的时间mL5 二t =2t1 =16 ,2qE 7 .解析:(1)粒子在正交的电磁场做直线运动,有Eq=qv0B2解得v0 =2粒子在磁场B1中匀速圆周运动,有 qv0B1 =m RmvnmE解得R 0R二雇 qB1B2qB1 qB1B2由题意知粒子在磁场 Bi中圆周运动半径与该磁场半径相同,即(2)撤去磁场B2,在电场中粒子做类平抛运动,有水平方向匀加速R =-Eqt2竖直方向匀速 y = v(3)证明:设从 O点入射的任一粒子进入Bi磁场时,速度方向与 x轴成。角,粒子出Bi磁场与半圆磁场边界交于 Q点,如图所示,找出轨迹圆心,可以看出四边形OO1O2Q四条边

21、等长是平行四边形, 所以半径O2Q与OOi平行。所以从Q点出磁场速度与 O2Q垂直,即与x轴垂直,所以垂直进入 MN边界。进入正交电磁场 E、B2中都有Eq = qVoB2故做直线运动。8 .解析:(1)由沿y轴正方向射入磁场的粒子,恰能从磁场与电场的相切处进入电场可知 粒子M在磁场中做匀速圆周运动的轨道半径R=r=0.5m。2粒子M在磁场中匀速圆周运动有:qvB =mR解得 v ="qBR =1 106m/ sm(2)由圆周运动的半径与圆形磁场的半径相等粒子N在磁场中转过120°角后从P点垂直电场线进入电场,运动轨迹如图所示。在电场中运动的加速度大小a =且=1.5M1012m/s2m穿出电场的竖直速度 vy=at=aL=7.5 105m/s v速度的偏转角tan) = =0.75 v在磁场中从P点穿出时距O点的竖直距离 Ay1 =1.5r =0.75m在电场中运动沿电场方向的距离Ay2 =1at2 =1£q (L)2 =0.1875m222 m v射出电场后匀速直线运动,在竖直方向上Ay3 =(x_r _L)tano( =0.75m最好达到荧光屏上的竖直坐标y =Ay1 _(Ay2 +Ay3) =-0.1875m故发光点的位置坐标(2m, - 0.1875m) 29 .解析:粒子在磁场中匀

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论