华师大版九年级数学下第章圆全章导学案_第1页
华师大版九年级数学下第章圆全章导学案_第2页
华师大版九年级数学下第章圆全章导学案_第3页
华师大版九年级数学下第章圆全章导学案_第4页
华师大版九年级数学下第章圆全章导学案_第5页
免费预览已结束,剩余37页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、学校班级小组姓名小组评价教师评27.1圆的认识第1课时27.1.1圆的基本元素【学习目标】1 .理解圆的两种定义,理解并掌握弦、直径、弧、优弧、劣弧、半圆、等圆、等弧、圆心角等基本概念,能够从图形中识别;2 .理解“直径与弦”、“半圆与弧”、“等弧与长度相等的弧”等模糊概念;3 .能应用圆的有关概念解决问题.【学习重难点】重点:理解圆的定义,并掌握圆的基本元素,能从图形中识别;难点:理解“直径与弦”、“半圆与弧”、”等弧与长度相等的弧”等模糊概念;【学法指导】通过生活中圆形物体的感性认识,并自己动手操作画图,理解圆的定义,通过阅读教材理解圆的相关概念并在图中识别,澄清相关班您,并能用相关概念来

2、解决问题.【自学互助】一一、自学教材P36-37(一)知识链接1 .自己回忆一下,小学学习过圆的哪些知识?(图1)2 .结合生活实际,说说生活中有哪些物体是圆形的?并辿考向有什么特征?(二)根据以下题目自主学习并完成1.理解圆的定义:(自己动手画圆)(T1)描述性定义:从圆的定义中归纳:圆上各点到定点(圆心O)的距离都等于到定点的距离等于定长的点都在_.(2)集合性定义:(3)圆的表示方法:以O点为圆心的圆记作,读作.(4)要确定一个圆,需要两个基本条件,一个是,另一个是,其中确定圆的位置,确定圆的大小.2.圆的相关概念:(1)弦、直径;(2)弧及其表示方法;(3)等圆、等弧。如图1,弦有线段

3、,直径是,最长的弦是,优弧有;劣弧有【展示互导】活动1.学生展示自主学习内容并相互交流(2)弦是直径.()弧是半圆.()长度相等的两条弧是等活动2.判断下列说法是否正确,为什么?(1)直径是弦.()(3)半圆是弧.()(4)(5)等弧的长度相等.()(6)弧.()活动3.。的半径为2cm,弦AB所对的劣弧为圆周长的1,则/AOB=6AB=活动4.已知:如图2,OA、OB为。O的半径,C、D分别为OA、OB的中点,求证:(1)AB;(2)AEBE0DCEA活动4.如图,AB为。的直径,CD是OO中不过回心的任意己条弦,求证:AB>8(图2)【质疑互究】通过自学和同学展示你还有哪些困惑或新的

4、思考:【检测互评】1 .教材P37练习1、2题2 .下列说法正确的有()半径相等的两个圆是等圆;过圆心的线段是直径;(图3)半径相等的两个半圆是等弧;分别在两个等圆上的两条弧是等弧.A.1个B.2个C.3个D.4个3 .如图3,点A、O、D以及点B、O、C分别在一条直线上,则圆中有条弦.4 .。的半径为3cm,则。中最长的弦长为5 .如图4,在ABC中,ACB90,A40,以C为圆心,CB为半径的圆交AB于点D,求ACD的度数.【总结提升】1、知识小结(1)圆的两种定义:(2)什么是弦、直径、弧、半圆、优弧、劣弧、等圆、等弧?(3)同圆或等圆的半径有什么性质?2、拓展提升已知:如图,AB是。的

5、直径,CD是。0的弦,ABCD的延长线交于E,若AB=2DE/E=18°,求/C及/AOC勺度数.学校班级小组姓名小组评价教师评价第2课时27.1.2圆的对称性(1)【学习目标】1 、经历探索圆的中心对称性及有关性质的过程2 、理解圆的中心对称性及有关性质3 、会运用圆心角、弧、弦之间的关系解决有关问题【学习重难点】重点:理解圆的中心对称性及有关性质难点:运用圆心角、弧、弦之间的关系解决有关问题【学法指导】通过观察、动手操作、合作交流等方法探索圆中的圆心角、弦、弧之间的AB关系,运用圆心角、弧、弦之间的关系解决有关问题。【自学互助】1、自学教材p37-38内容2、按照下列步骤进行小组

6、活动:在两张透明纸片上,分别作半径相等的。O和。O在。O和。中,分别作相等的圆心角/AOB/A'O'B',连接ABa'b1将两张纸片叠在一起,使。O与。O重合(如图)固定圆心,将其中一个圆旋转某个角度,使得OA与OA重合在操作的过程中,你有什么发现?3、上面的命题反映了在同圆或等圆中,圆心角、弧、弦的关系,对于这三个量之间的关系,你还有什么思考?你能够用文字语言把你的发现表达出来吗?4、圆心角、弧、弦之间的关系:O5、试一试:如图,已知。QOO半径相等,ABCD分别是OQ。的两条弦填空:(1)(2)(3)6、在圆心角、弧、弦这三个量中,角的大小可以用度数刻画,弦

7、的大小可以用长度刻画,那么如何来刻画弧的大小呢?弧的大小:圆心角的度数与它所对的弧的度数相等【展示互导】活动1.学生展示自主学习内容并相互交流活动2.如图,ARACBC都是。O的弦,/AOC=BOC/ABCW/BACffi等吗?为什么?【质疑互究】通过自学和同学展示你还有哪些困惑或新的思考:【检测互评】1、教材P39练习1、2题2、画一个圆和圆的一些弦,使得所画图形满足下列条件:(1)是中心对称图形,但不是轴对称图形;(2)既是轴对称图形,又是中心对称图形。BD3、如图,在OOc/1=30°,则/2=4、一条弦把圆分成1:3两部分,则劣弧所对的圆心角为5、。0中,直径AB/CD玄,a

8、c度数60,则/BOD=6、在。O中,弦AB的长恰好等于半径,弦AB所对的圆心角为7、如图,AB是直径,靛C>DE,/BO尊40的度数是【总结提升】1、知识小结(1)在同圆或等圆中,如果两个圆心角、两条弧、中有一组量相等,那么它们所对应的其余各组量都分别(2)圆心角的度数与它所对的弧的度数2、拓展提升(1)已知,如图,AB是。O的直径,M,N分别为AO,BO勺中点,CMLAB,D2AB,垂足分别为MN求证:AC=BD(2)已知,如图,在。O中,弦ADBC,你能用多种方法证明ABCD吗?学校班级小组姓名小组评价教师评价第3课时27.1.2圆的对称性(2)【学习目标】1 .理解圆的轴对称性;

9、2 .掌握垂径定理及其推论,能用垂径定理及其推论进行有关的计算和证明【学习重难点】重点:“垂径定理”及其应用难点:垂径定理的题设和结论以及垂径定理的证明【学法指导】本节课的学习中通过动手操作、观察、猜想、归纳、验证得出相关结论,并加以应用.【自学互助】1、自主学习教材P39-40相关内容3 .阅读教材p39“试一试”内容,按下面的步骤做一做:(如图1)第一步,在一张纸上任意画一个。O,沿圆周将圆剪下,作。O的一条弦AB;第二步,作直径CD,使CDAB,垂足为E;/-Q、第三步,将。O沿着直径折叠.你发现了什么?0归纳:(1)图1是对称图形,对称轴是A、.一E.,B(2)相等的线段有,相等的弧有

10、匕【展示互导】C图活动1:(1)如图2,怎样证明“自主学习2”得到的第(2)个'结论.叠合法证明:O(2)垂径定理:垂直于弦的直径弦,并且aT的两条弧.定理的几何语言:如图2QCD是直径(或CD经过圆心)CDAB(3)推论(图:活动2:垂径定理的应用如图3,已知在OO中,弦AB的长为8cm,圆心O1JAB-的距离(弦心距)为3cm,求。O的半径.(分析:可连结OA,作OCAB/C。;AB解:【质疑互究】通过自学和同学展示你还有哪些困惑或新的思考:【检测互评】1 .教材p40练习1,2题2 .圆的车径为5cm,圆心到弦AB的距离为4cm,则ABcm.3 .如图5,AB是。的直径,CD为弦

11、,CDAB于E,则下列结论中不成立的是()A.COEDOEB.CEDEC.OEBED.Bd?C3.如图6KC曲。的直径,ABCDTE,DE=8cm,CE=2cm则AB=cmA理有两个条件,三个结论(2)定理可推广为:在五个条件过圆心,垂直于弦,平分弦,平分弦所对的优弧平分弦所对的劣弧中,知推。2、方法小结:(1)在运用垂径定理解决问题是辅助线的常用作法:连半径,.过圆心向弦作垂线段。Od(2)如图4,根据垂径定理和勾股定理,“半弦、半径必打距”构成直角三角形,则r、d、a的关系为")知道其中任意两个量,可求出第三个量3、拓展提升(1)已知:如图7,AB是。的直径,弦CDftAB于E点

12、,BE=1,AE=5,/AEG30,求CD的长.(2)如图9,。0中,直径AB=15cm有一条长为9cm的戏弦9选而通上滑动(点C与A,点D与B不重合),cnCDAB于f/dELCD$S,AB于E.(1)求证:AE=BF5h(2)在动弦CD骨动的过程中,四边形CDEF勺面积是否3tM?若是定值,请给出证明并求这个定值;若不是,请说明理由.学校班级小组姓名小组评价教师评价第4课时27.1.2圆的对称性(3)【学习目标】1 .熟练掌握垂径定理及其推论;2 .能用垂径定理及其推论进行有关的计算和证明,进一步应用垂径定理解决实际问题.【学习重难点】重点:“垂径定理及其推论”及其在实际问题中的应用难点:

13、分清垂径定理及其推论的题设和结论、垂径定理及其在实际问题中的应用【学法指导】本节课学习中通过对比理解垂径定理及其推论,应用中善于将实际问题转化为数学问题,培养建模思想和提高分析问题、解决问题的能力。【自学互助】阅读教材P40并完成下列各题1 .垂径定理:2 .推论:3 .如图1,eO的直径为10,圆心O到弦AB的距离OM的长为3,则弦AB的长方展示互导】活动1:如图3,用Ab表示主桥拱,设Ab所在圆的圆心是.点00,半彳空为R.归纳:(1)如图4,半弦、半径、弦心距构成直角三角恪M据母股定理可得.aB(2)在弦长a、弦心距d、半径r、弓形高h中,知道其中雇建两个,可求出其它两个.R活动2:如图

14、5,已知Ab,请你利用尺规作图的方法作出0AB的中点,说出你的作法.(图作法:【质疑互究】通过自学和同学展示你还笔御些困惑或新跄营彘图5)【检测互评】、1.(长春中考)如图6,AB是eO的直径,弦CDAB,垂足为E,如果AB20,CD16,那么线段OE的长为()圆心O到弦的距离OM的上为3,则弦AB的长是A.10bB.8C.6D.4)+jj)/O厂CjIVIIN八、,3 .P为。0内一点,OP=3cmOO半径为(5(3,则经过Pji勺最短弦长为;?最长弦长为.4 .如图8,P为。O的弦AB上的点,PA=6,PB=2,OO的半径为5,则Of=.5 .泸州市某居民区一处圆形下水管道破裂,修理人员准

15、备更换一段新管道.如图9所示,污水水面宽度为60cm,水面至管道顶部距离为10cm,问修理人员应准备内径多大的管道?总结提升忆骞三一1、知识小结,f本节课你有哪些收获?你有什么收获和同学分享?纱血?2、拓展提升|(图已知:如图11,A,B是半圆O上的两点,CD是。O的直径,AOD80,B是Ad的中点.(1)在CD上求作一点P,使得AP+PB最短;/、(2) 若CD4cm,求AP+PB的最小值.X:一J学校班级小组姓名小嘀号1教师评第5课时27.1.3圆周角(1)【学习目标】1 .理解圆周角的定义,了解与圆心角的关系,会在具体情景中辨别圆周角.2 .掌握圆周角定理及推论,并会运用这些知识进行简单

16、的计算和证明.【学习重难点】重点:理解并掌握圆周角定理及推论;难点:圆周角定理的证明中采用的分类思想及由“一般到特殊”的数学思想方法;【学法指导】本节课的学习中经历操作、观察、猜想、分析、交流、论证等数学活动,体验圆周角定理的探索过程,培养合情推理能力,发展自己的逻辑思维能力、推理论证能力和用几何语言表达的能力【自学互助】阅读教材P40-43并完成以下各题3 .顶点在,并且两边都与圆的角叫做圆周角.圆周角定义的两个特征:(1)顶点都在;(2)两边都与圆.4 .在下列与圆有关的角中,哪些是圆周角?哪些不是,为什么?5 .半质曝直径所游胸圆周角韶.工,上都等于K_.活动彳1)完成教材p41愿考问题

17、:一,一通过又曷考问题的探讨2)分析、论证网领出的结论为:(4)问题:对于一般的弧所对的圆周角,又有怎样的规律呢?活动2:根据问题完成p41页“试一试”内容(如图2)问题1:分别量一量图中弧AB所对的两个圆周角的度数,比较一下,再变动点C在圆周上的位置,看看圆周角的度数有没有变化。你发现其中有什么规律吗?问题2:分别量一量图中弧AB所对的两个圆周角和圆心角的度数,比较一下,你发现了什么?规律:同弧所对的圆周角的度数,并且它的度数恰好等于这条弧所对的圆心角的度数的活动3:证明上述规律(1)同学们在下面图3的。O中任取AB所对的圆周角,并思考圆心与圆周角有哪几种位置关系?(2)实际上九圆心对圆周角

18、存在三种位置关系:/扁心承斜角的一边上;圆心在圆周角的西部;J圆心在圆周角的外部.(如卜逸、)(3)(教师引号碌人加何楙劫f2.得到的窥律连向明呢?证明:当圆/他修单一我*来上国/4(R咻当圆心在圆周角内部(或在血周角外部)时,眄不能作辅助线将问题转化成风心在圆周角一边上的情况,从而运用前面的次玲,力出启的周涡蟀至于瓦的圆心,的旬%yc.证明:彳出过o的直径(2)(4)同弧所对的圆周角等于这条弧所对的圆心角的一半.其实,等弧的情况下该命题也是成立的,命题“同弧或等弧所对的圆周角相等”也是正确的,想一想为什么?(5)圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角,都等于这条弧所对的圆心角的.

19、(6)由圆周角定理和圆心角、弧、弦之间关系,可以证明:(学生自己完成)推论1:在同圆或等圆中,如果两个圆周角相等,它们所对的弧一定说明:注意圆周角定理及推论1不能丢掉“同圆或等圆”这个前提.活动3:(小组讨论)由图5,结合圆周角定理思考问题1:半圆(或直径)所对的圆周角是多少度?问题2:90°的圆周角所对的弦是什么?推论2:半圆(或直径)所对的圆周角是;的圆周角所对的弦是直径.说明:推论2为在圆中确定直角、成垂直关系创造了条件.CC2【质疑互究I万&C3通过自学和同学展示你还有哪些困惑或新的思考:【检测互评IA0B1.教材p44练习1、2、3题(直接做在书上)VJ3 .如图6

20、,点AB、C、D在。0上,若/C=60,则/D之二AOB=.4 .如图7,等边ABC的顶点都在。0上,点D是。0上一点,初ZBdC=【总结提加斤1 .谈谛本节课的体会彳知识:思想、方法、侬拉2港卫小;也?(1)已知以口图8,AB是。0的直径,弦CDLABKACD30,AE=2cm求(图(图/囱(2)如图9,/人8。勺三个顶点在。0上,/A=50°,/ABB60°,B渥OO的直径,BD交AC于点E,连结DC求/AEB勺度数.(3)已知:如图10,AB是。的直径,CD为弦,且AB!CD于E,F为DCA连结AF交。O于M求证第6课时27.1.3圆周角(2)图那组评价【学习目标】1

21、 .理解圆内接多边形和多边形的外接圆的概念,掌握圆内接四边形的性质,并会用此性质进行有关的计算和证明;2 .进一步掌握圆周角定理及推论,并会综合运用知识进行有关的计算和证明,培养分析问题、解决问题的能力.3 .理解并掌握“如果三角形一条边上的中线等于这条边的一半,那么这个三角形是直角三角形”这个直角三角形的判定方法.【学习重难点】重点:理解圆内接四边形的性质并能熟练运用圆周角定理及推论进行有关的计算和证明难点:综合运用知识进行有关的计算和证明时,培养自己的逻辑思维能力及分析问题、解决问题的能力【学法指导】本节课的学习中注重培养自己的逻辑思维能力、分析问题和解决问题的能力.【自学互助】自学教材P

22、43-44(一)知识链接1 .一条弧所对的圆周角等于这条弧所对的圆心角的.2 .在同圆或等圆中,同弧或等弧所对的圆周角;在同圆或等圆中,如果两个圆周角相等,它们所对的弧一定3 .所对的圆周角是90。,90。的圆周角所对的弦是.4 .如图1,点A,B,C都在。上,若ACB30,则AOB的度数是.5 .如图2,AB是。O的直径,点C是。O上的一点,若A65,则B的度数是6 .如图3,AB是OO的直径,点A是Cd是中点,若CDA28,则ABD.cC.-1 颉工?中演1小扁一个圆代声我形的这个娶,7坐这个AB甩1)四边形ABCD(18O的(图3),图2 .圆内接四边形的对角之间有什么性质呢?请你量一量

23、图4中的两对对角,看看有什么规律?规律:圆内接四边形的对角.【展示互导】活动1:怎样利用圆周角定理来证明上述规律呢证明:如图5,连接OB、OD圆内接四边形的性质:圆内接四边形的对角_DC;/ACB的平分线(图O活动2:如图6,OO的直径AB为10cm,弦AC'为交。于D,求BCADBD的长.活动3:如图7,AB是。O的直径,弦CD与AB相交于点E,ACD60,ADC50,求CEB的度数.(提示:连接BD)C点评:解决圆的有关问题时,如果题目中有直径,常常添加辅跳线,b构成直径所对的圆周角.活动4:思考:如图?你有什么AO简捷的办法?是一个圆形零件,你能找到它的圆位(图【质疑互究】通过自

24、学和同学展示你还有哪些困惑或新的思考:【检测互评】1.如图8,AB是。O的直径,AOC130,则/D等于(A.65B.25C.15D.)352.在。O中,若圆心角/AOB100。,C是Ab上一点,则/ACB?于()A.80B.100C.1303.如图9,弦AB,CDffi交于E点,若/BAS27D.140,/BEG64。,则/A0由于().A.37四边形A4.B5.A,AABB.74.69接于C.54BOD138,JDD.64一个外角/DCE。0的直径,BDA6.E,Qj0C6阴、C于点E,连结DC求/AEB勺度数.因色用:如图12,(在图ABC中,AB(AC圈以AB为直径的胴,BC于D,交A

25、C于求证:BdDe【总W1、本节课你有哪些收获?谈谈你的想法.2、拓展提升EBDC已知:如图13,ABCg接于。QBC=12cmZA=60.(求囱0的直径.学校班级小组姓名0教师评27.2与圆有关的位置关系图27.2.1点和圆的位置关系【学习目标】1 .掌握点和圆的位置关系,能根据点到圆心的距离与圆的半径大小关系,确定点与圆的位置关系;2 .理解“不在同一直线上的三个点确定一个圆”,掌握不在同一直线上的三个点作圆的方法并掌握它的运用.3 ,了解三角形的外接圆和三角形外心的概念.【学习重难点】重点:点和圆的位置关系,不在同一直线上的三个点确定一个圆及其它们的运用:难点:理解“不在同一直线上的三个

26、点确定一个圆”,掌握不在同一直线上的三个点作圆的方法并掌握它的运用.【学法指导】本节课的学习中注重学生动手操作并让学生发现有关结论.【自学互助】自学教材P46-78(一)知识链接L圆上所有的点到圆心的距离都等于.2 .确定圆需要两个基本条件,一个是,另一个是,其中,确定圆的位置,确定圆的大小.3 .点确定一条直线.(二)自主学习1 .阅读教材p46,思考:(1)平面上的一个圆把平面上的点分成一部分,即点在圆、点在圆、点在圆.(2)各部分的点与圆有什么共同特征?自己画图验证一下,看看能得到什么规律?2 .点和圆的位置关系:平面内,设。O的半径为r,点P到圆心的距离为O(=d,则有三种位置关系:j

27、(2)点P在。上(图(1)点P在。外【展示互导】活动1:如图1所示,在ABC中,C90,AC2cm,BC4cm,CM是中线,以C为圆心,CM为半径作圆,请判断ARM三点与。C的位置关系.活动2:确定圆的条件1.阅读教材p47“试一试”内容,(小组合作)画一画:(1)过一个已知点可以作个圆;(2)过两个已知点可以作个圆,它们的圆心分布的特点是2.经过不在同一直线上的三点作圆,并思考经过三点一定能画出一个圆吗?如果能,那么如何找出这个圆的圆心呢?作圆,使该圆经过已知点A、B、C三点(其中A、B、C三点不在同一直线上).作法:A3 .结论:*确定一个圆.思考:经过同一直线上的三个点能作出一个圆吗?4

28、 .相关概念:经过三角形的三个顶点可以作一个圆,这个圆叫做三角形的圆;则这个三角形叫做圆的_B.'C;外接圆的圆心叫做三角形的,是三角形三条边的交点,三角形的外心到三角形的三个顶点的距离。【质疑互究】通过自学和同学展示你还有哪些困惑或新的思考:【检测互评】1 .教材p48练习题.2 .。的半径为3cm,点O到点P的距离为而cm,则点P()A.在。O外B.在。O内C.在。上D.不能确定3 .下列说法正确的是()A.三点确定一个圆B.任意的一个三角形一定有一个外接医C.三角形的外心是它的三个角的角平分线的交点D.任意一个圆有且只有一个内接三角形4 .若ABC中,C90,AC10cm,BC2

29、4cm,则它的外接圆的直径为JI【总结提升】1 、本节课你有哪些收获?谈谈你的感悟2 、拓展提升已知:如图2,点D的坐标为0,6,过原点O,D点的圆交x轴的正半轴于A点.圆周角OCA30,求A点的坐标.学校班级小组姓名小组评价教师评价27.2.2直线和圆的位置关系【学习目标】1 .理解直线与圆有相交、相切、相离三种位置关系;2 .根据圆心到直线的距离与圆的半径之间的数量关系揭示直线和圆的位置关系;3 .能够利用公共点个数和数量关系来判断直线和圆的位置关系.【学习重难点】重点:理解并掌握直线和圆的三种位置关系;难点:掌握识别直线和圆的位置关系的方法;【学法指导】本节课的学习过程中注重动手操作、观

30、察、发现、总结等活动,从运动的观点和量变到质变的观点来理解直线和圆的三种位置关系.【自学互助】(一)知识链接1. (1)点到直线的距离:从已知点向已知直线作垂线,已知点与垂足之间的线段的叫做这个点到这条直线的距离.如图1,C为直线AB外一点,从C向AB引垂线,D为垂足,则线段CD的即为点C到直线AB的距离.c2. 如果设。O的半径为r,点P到圆心O的距离为d,请你用d与r之间的数量关系表示点P与。O的位置关系。:ADB(1)点P在OOdr;(图(2)点P在OOdr;(3)点P在OOdr.(二)自主学习1.阅读教材p48的“引言”及p49的“试一试”内容(1)想一想:如果把太阳看作一个圆,地平线

31、看成直线,那你能根据直线和圆的公共点个数想象一下,直线与圆有几种位置关系?再想象用钢锯切割钢管的过程,如果把钢管看作一个圆,钢锯看成直线,那情况又如何呢?(2)做一做:在纸上画一条直线,把硬币(或圆形纸片)的边缘看作圆,在纸上移动硬币,你能发现直线和圆的公共点个数的变化情况吗?公共点个数最少时有几个?最多时有几个?结论:直线与圆在同一平面上做相对运动时,其位置关系有种(1)直线和圆有个公共点时,叫做直线和圆相交,这条直线叫做(2)直线和圆有个公共点时,叫做直线和圆相切,这条直线叫做这个公共点叫做.(3)直线和圆有个公共点时,叫做直线和圆相离.3.阅读教材P49并结合图27.2,6,你能得到直线

32、与圆的位置关系用圆心到直线的距离和半径的大小来区分吗?设。的半径为r,圆心O到直线l的距离为d,(1)直线l和圆O相离;(2)直线l和圆O相切;(3)直线l和圆O相交.表示上述结论既可以作为各种位置的判定,也可以作为性质.【展示互导】活动1:归纳(1)直线与圆的三种位置关系(设圆心到直线的距离为d,半径为r直线与圆的位置关系相交相切相离图形公共点个数0d与r的关系公共点名称交点直线名称切线扬(2)判定直线与圆的位置关系的两种方法:一种是从直线与圆的公共点的个数来断定;一种是用d与r的大小关系来断定.从公共点的个数来判定:直线与圆有两个公共点时,直线与圆;直线与圆有一个公共点时,直线与圆;直线与

33、圆有没有公共点时、直线与圆;从d与r的大小关系来断定:dr时,直线与圆dr时,直线与圆;dr时,直线与圆活动2:自学p50例1,并展示自学成果活动3:已知:如图2所示,AOB30,P为OB上一点,且OP5cm,以p为圆心,以R为半径的圆与直线OA有怎样的位置关系?为什纱R2cm;R2.5cm;R4cm.【质疑互究】通过自学和同学展示你还有哪些困惑或新的思考:,【检测互评】1 .教材p50练习1,2,3题.Opb2 .已知。的直径为6cm,直线l和。O只有一个公共岛图则圆心O到直线l的距离为()A.1.5cmB.3cmC.6cmD.12cm3 .直线l上一点到圆心O的距离等于。O的半径,直线l与

34、。O的位置关系是()A.相离B.相切C.相交D.相切或相交4 .已知。的半径为r,点O到直线l的距离为5厘米。(1)若r大于5厘米,则l与。O的位置关系是.若r等于2厘米,l与。有个公共点.若。与l相切,则r=厘米.5 .已知:如图3,RtAABO,/C=90°,BG=5cmAG=12cm以C点为圆心,作半径为R的圆,求:(1)当R为何值时,。0和直线AB相离?(2)当R为何值时,。0和直线AB相切?0当R为何值时,O0和直线AB相交?【总结提升】1、本节课你有哪些收获?谈谈你的感悟.(图2、拓展提升(1)如图4,A城气象台测得台风中心在城正西方向300千米的B处,并以每小时17千米

35、的速度向北偏东60的BF方向移翡,距离台风中心200千米的范围是受台风影响的区域.,A城是否会受到这次台风的影响?为什么?A东A若A城受到这次台风的影响,试计算A城(图遭受这次台风影响的时间有多长?(2)如图5,直线AR0D相交于点O,AOD30,半径为1cm的。P的圆心在射线OA上,且与点O的距离为6cm.如果。P以1cm/s的速度沿由A向B的方向移动,那么多少秒钟后。P与直线0D相切?0学校班级小组姓名AQ./O%评侪教师评27.2.3切线第1课时圆的切线的判定【学习目标】1 .理解切线的判定定理,会准确过圆上一点画圆的切线;2 .会用圆的判定定理进行简单的证明.【学习重难点】重点和难点是

36、理解并掌握切线的判定定理及其应用;【学法指导】本节课在学习过程中注重动手操作、观察、发现、总结等活动去发现相关结论,在解决问题中培养分析问题和解决问题的能力,总结常用辅助线的做法.【自学互助】自习教材P51-52并完成下列各题L切线的定义:直线与圆有公共点时,这条直线叫做圆的切线.2. 切线的判定方法:(1)和圆有公共点的直线是圆的切线.(即切线的定义)(2)到圆心的距离半径的直线是圆的切线.3. 切线的判定定理:;4. 切线的性质定理:;【展示互导】活动1:阅读教材p51的“做一做”:(1)做一做:如图1,在。O中,经过半径OA的外端点A作直线lOA,则圆心O到直线l的距离是多少?直线l和。

37、O有什么位置关系?为尸4(2)从作图中得到切线的判定定理:(O)经过并且于这条半径的的直线是圆的切杰(图定理必须满足哪两个条件,如果只满足一个条件,画图看一看,此时所画的直线是不是圆的切线.定理的几何语言:如图2,Q,直线l是。O的切线(3)已知一个圆和圆上的一个点,如何过这个点画出圆的切线?痴一脸!活动2:如图3,直线AB经过。O上的点C,并且OA=OB,CA=CB,求证:直线AB是。O的切线.(分析:已知AB经过圆上的点C,要用上面的为J定定理,即谡葵),证明)XXB证明:AC小结:当直线与圆有公共点,常连接和公共点得半径,金精线垂直于.活动3:已知:如图4,P是/AOB勺角平分线OCk一

38、点.PaOA于E.以P点为圆心,PE长为半径作。P.求证:OP与。斯目切.(分析:OB与圆没有公共点,应该选用哪种判定方法?怎样像南助线?)方法小结:当直线与圆没有公共点,常过圆心作直线的证明圆心到直线的距离等于/VrCT质疑互究八通过自学和同学展示你还有哪些困惑或新的思考:(图【检测互评】1 .下列说法正确的是()A.与圆有公共点的直线是圆的切线.B.和圆心距离等于圆的半径的直线是圆的切线;C.垂直于圆的半径的直线是圆的切线;D.过圆的半径的外端的直线是圆的切线2 .教材p52练习第1,2,3题.3 .已知:如图5,A是。O外一点,AO的延长线交。OTjCBB在圆上,且ABBC,A30.求证

39、:直线AB是。O.)a【总结提升】1、课堂总结(图(1) .圆的切线有哪几种判定方法?分别是什么?(2) .证明圆的切线时,常常要添加辅助线,有两种方法上当直线与圆有公共点时,简说成“连半径,证垂解二不当直线与圆没有公共点时,简说成“作垂直,必除7日R2、拓展提升°/已知:如图6,ABCg接于。Q过A点作直线DE当/BAE=/C时,试确定直线DEW。0的位置关系,并证明你的结论.学校班级小组姓名小组评价教师评价第2课时圆的切线的性质【学习目标】1 .理解切线的性质定理及推论,能正确区分判定和性质的题设和结论;(学习重点、难点)2 .掌握圆的判定和性质的综合应用.(学习重点、难点)|上

40、【学法指导】学习过程中从切线的判定的逆命题去发现相关性质,并注意区分切线的判定定理和性质定理,在解决问题中培养分析问题和解决问题的能力,总结常用辅助线的做法.【自学互助】自主自习教材P51-52)1 .切线有哪些判定方法?2 .切线的性质:(1)切线与圆有公共点;(2)切线和圆心的距离半径.【展示互导】活动1:阅读教材p51的最后一段:(1)想一想:如图1,如果直线l是。0的切线,点A为切点,那么半径0A与直线l是垂直吗?(可以用反证法证明,选学)(2)切线的判定定理:圆的切线经过切点的.定理的几何语言:如图1,Q直线l是。0的切线由性质定理,容易得到下面的推论:经过圆心且垂直于切线的直线必过

41、切点且垂直于切线的直线必过.A直于(图2)小结:一条直线若满足过圆心,过切点,垂切线这三条中的条,就必然满足条.活动2:如图2,AB是。O的直径,PA切。O于A,OP交。于C,连接BC.若P30,求B的度数.活动3:如图3,ABC为等腰三角形,ABAC,O是底边的中点,OO与腰AB相切于点D,求证:AC与。小结:已知一条直线是圆的切线时,辅助线常连结圆心【质疑互究】通过自学和同学展示你还有哪些困惑或新的思考:1.如图4,直线AB与。相切于点A,。的半径为2,若OBA30,则OB的长为()A. 43B.4C.2,3D.2JOO于C,若A2.如图5,A25则DA.40口AB初口在ab的延长彳AC3

42、.(2009)cBCB. 50C.60图(图泸州)如图6,以O为圆心的两个同心圆中,大圆的弦D.(图若大圆半径为10cm,小圆半径为6cm,则弦AB的长为70AB与小圆相切cm.【检测互评】4.已知:如图7,AB。,AGBC以BC为直径的。O交AB于E点,直线EFLAC于F.1、课堂小结直线PB(1) .切线分别有哪些判定方法和性质?(口述)(2) .在本节中,有哪些常用辅助线的做法?(口述)2、拓展提升(2009安顺)如图9,AB=BC以AB为直径的。0交AC于点D,过D作DHBQ垂足为E。(1)求证:DE是。0的切线;(2)作DGLAB交。0于G,垂足为F,若/A=30°,AB=

43、8,求弦DG的长。学校班级小组姓名小组评价教师评价第3课时切线长定理及三角形的内切圆【学习目标】1 .理解切线长的概念,掌握切线长定理,会应用切线长定理解决问题;2 .理解三角形的内切圆及内心的概念,掌握内心的性质,会作三角形的内切圆.【学习重难点】重点:理解切线长的概念,掌握切线长定理;难点:会应用切线长定理解决问题.【学法指导】学习过程中注重动手操作、观察、发现、总结等活动去发现相关结论,并注意切线与切线长、切线的性质与切线长定理、三角形外接圆和内切圆、外心与内心等之间的对比,在解决问题中培养分析问题和解决问题的能力.【自学互助】A-自学教材P52-54)o(一)知识链接P1 .切线的定义

44、是什么?切线有哪些性质?(图2 .角平分线的判定和性质是什么?(二)自主学习阅读教材p52:圆的上某一点与切点之间的,叫做这点到圆的如图1,P是。O外一点,PA,PB是。O的两条切线,点A,B为切点,把线PA,PB的长叫做点P到。O的线.注意:切线和切线长的区别:切线是一线,不可度量,而切线长是线段,一度M.【展示互导】活动1:(1)阅读教材p53的“探索”,动手做一做:如图2,你能得到什么结论?为什么?切线长定理:过圆外一点所画的圆的两条切线,它们的相等,这一点和圆心的连线平分.几何语言:QPA、PB是。O的两条切线(2)如何证明切线长定理呢_.已知:如图2,已知PAPB是。的两条需买甲一求

45、证:PA=PB/OPANOPB证明:(3)若POif圆相分别交于CD,连接AB于P仅于点E,(!哪些相等的线段?有哪些相等的角,有哪些相等的弧?有哪些互相垂直的线段?有哪些全等的三角形.活动2:(1)阅读教材p54的“试一试”:想一想,圆与三角形铁皮的三边应该满足什么条件?(2)怎样作圆呢?怎样找圆心和半径?假设符合条件的圆已经作出,圆应当与三角形的三边.那么圆心到三边的距离都等于什么?圆心在三个内角的什么线上?(3)如何作图呢?(教师引导)/(4)三角形的内切圆:与三角形各边、叫做主角形的内切圆,内切圆的圆心是三角形的交点,叫做三角形的,三角形叫做圆的(5)说明:当已知三角形的内心时,常常作

46、过三角形的顶点和内心的射线,则这条射线平分三角形的内角.内心到三角形三边的距离相等活动3:(p97例2)如图3,zABC的内切圆。0与BGCAAB分别相切于点DE、F,且AB=9cmBC=14cm,CA=13c味AF、BDCE的长。活动4:已知:如图4,P为。外一点,PA、PB为。的切线,A和B是切点,BC是直径.求证:AC/OP.【质疑互究】通过自学和同学展示你还有哪些困惑或新的思考【检测互评】1 .教材p55练习1,2题A.5B.C.102 .如图5,从圆外一点P引。0的两条切线PAPB(胡扇分别为A,B,如果/APB=60,PA=10则弦AB的长()3 .啰冏令;从。9外一点P引DA冬切

47、线PAX力切点分别为A,B,若PA=8cmC逗漪上的一个独点而o/、B吵号不果M,过点C作。0的切EDER/B羲勿”A4 .加脚学,AMAN分别切。0卡航飞两点,点亩式/上,且mbn70,则5 .已知:如图8,PAPB分别是。的切线,A,B为切点,AC是。的直径,/BAC35,求/P的度数.【总结提升】'1 、本节课我们有哪些收获?还有什么问题没解决吗?2 、拓展提升止图(1)已知:如图9,。是RtzABC勺内切/圆,/C=901.BA若AOIZcriB©9cm求。0的半径r;若A©b,BC=a,AB=c,求。O的半径r.(2)已知:如图10,AB为。的直径,PQ切

48、。于T,ACLPQ于C,交。O于D求证:AT平分/BAC若AD2,TC«,求。的半径.学校班级小组姓名/5荷海教师评27.3圆中的计算问题第1课时弧长和扇形面积【学习目标】了解扇形的概念,理解n?。的圆心角所对的弧长和扇形面积的计算公式并熟练掌握它们的应用。【学法指导】通过复习圆的周长、圆的面积公式,探索n。的圆心角所对的弧长12工和扇180形面积S的计算公式,并应用这些公式解决一些题目。360【总结提升】一、自学教材P58-61(一)知识链接1 .圆的周长公式是。2 .圆的面积公式是。3 .什么叫弧长?(二)自主学习自学教材P59-61,思考下列内容:1.圆的周长可以看作度的圆心角

49、所对的弧.1 °的圆心角所对的弧长是。2的圆心角所对的弧长是。4。的圆心角所对的弧长是。n。的圆心角所对的弧长是2 .什么叫扇形?3.圆的面积可以看作度圆心角所对的扇形的面积;设圆的半径为R,1°的圆心角所对的扇形面积S扇形=工设圆的半径为R,2的圆心角所对的扇形面积S扇形=设圆的半径为R,5的圆心角所对的扇形面积S扇形=设圆的半径为Rn的圆心角所对的扇形面积S扇形=4.比较扇形面积公式和弧长公式,如何用弧长表示扇形的面积?【展示互导】例1.如右图,水平放置的圆柱形排水管道的界面半径是0.6m,其中水面高0.3m。求截面上有水部分的面积(结果保留小数点后两位)例2.如图,已

50、知扇形AOB勺半彳全为10,/AOB=60,求Ab的长(?结果精确AB0到0.1)和扇形AOB勺面积(结果精确到0.1)通过自学和同学展示你还有哪些困惑或新的思考:【质疑互究】【检测互评】1 .教材P62练习1,2小题。2 .已知扇形的圆心角为120°,半径为6,则扇形的弧长是3.如图所示,把边长为2的正方形ABCD勺一边放在定直线BC(A1)L上,按顺时针方B'向绕点D旋转到如图的位置,则点B运动到点B'所经过的路线长度为(D.4 .如图所示,OA=30B贝UAd的长是?CBC的长的倍.5 .如图,这是中央电视台“曲苑杂谈”中的一副图案,它是一扇形图形,其中AOB为

51、120°,OC长为8cm,CA长为12cn则阴影部分的IAD形的0BCO6.已知扇形附半径为AAOEcn2,扇B哪张为兀cm,则该隔形的面积是7.如图,AB为。O的直径,CDAB于点E,交。O于点D,OFAC于点F.(1)请写出三条与BC有关的正确结论;(2)当D30,BC1时,求圆中阴影部分的面积.学校班级小组姓名小组评价教师评价第2课时弧长和扇形面积(2)【学习目标】/1 .了解圆锥母线的概念,理解圆锥侧面积计算公式.2 .理解圆锥全面积的计算方法,并会应用公式解决问题.【学法指导】通过设置情景和复习扇形面积的计算方法探索圆锥侧面积和全面积的计算公式以及应用它解决现实生活中的一些

52、实际问题.【自学互助】(一)知识链接1 .什么是n。的圆心角所对的弧长和扇形面积的计算公式,并请讲讲它们的异同点。2 .一种太空囊的示意图如图所示,?太空囊的外表面须作特别处理,以承受重返地球大气层时与空气摩擦后产生的高热,那么该太空囊要接受防高热处理的面积应由几部分组成的.(二)自主学习自学教材P62-63,思考下列问题:1 .什么是圆锥的母线?2 .圆锥的侧面展开图是什么图形?如何计算圆锥的侧面积?如何计算圆锥的全面积?若圆锥的母线长为1,底面圆的半径为r,则圆锥的侧面积可表示为,圆锥的全面积为。3 .圆柱的侧面展开图是什么图形?若圆柱底面圆的半径为r,圆柱的高为h,则圆柱的侧面积可表示为

53、,全面积可表示为。【展示互导】例1:蒙古包可以类似的看成由圆锥和圆柱组成,如果想用毛毡搭建20个底面积为35吊,高为3.5m,外围高1.5m的蒙古包,至少需要多少平方米的毛毡?(结果取整数)例2:已知扇形的圆心角为120°,面积为300cM.、,|一氏(1)求扇形的弧长;(2)若将此扇形卷成一个圆锥,则启个圆锥的轴截面面积为多少?【质疑互究】通过自学和同学展示你还有哪些困惑或新的思考:【检测互评】1 ,P63练习1,2题。2 .已知圆锥的底面半径为1cm,母线长为3cm,则其全面积为()A.兀3.用半径为30GR1圆心角为120的扇形围成一个圆锥的侧面,?则圆锥的底面半径为(A.10cmB.30cmC.45cm4 .如图,圆锥的侧面积恰好等于其底面积的2倍,则该圆脚唾题)展开图所对应扇形圆心角的度数为(A.60oB.90oC.120oD.180o5 .矩形ABCD勺边AB=5cmAD=8cm以直线AD为轴旋转一周,?所得圆柱体的表面积是6 .将一个底面半径为3gri高为4G

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论