湖南省初中学业水平考试标准(2021年版)数学(1)_第1页
湖南省初中学业水平考试标准(2021年版)数学(1)_第2页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、一、考试指导思想初中数学学业水平考试是依据义务教育数学课程标准(2011年版)(以下简称数学课程标准)进行的义务教育阶段数学学科的终结性考试。初中数学学业水平考试要有利于全面贯彻党的教育方针,推进素质教育,落实立德树人的根本任务;有利于体现九年义务教育的性质,全面提高教育质量;有利于数学课程改培革养,学生的创新精神和实践能力;有利于减轻学生过重的课业负担,促进学生生动、活泼、主动地学习。初中数学学业水平考试试题应当根据学生的年龄特征、思维特点、数学背景和生活经验编制,面向全体学生,使具有不同认知特点、不同数学发展程度的学生都能正常表现自己的学习水平。初中数学学业水平考试要求公正、客观、全面、准

2、确地评价学生通过初中阶段的数学学习所获得的发展状况。对学生在知识技能、数学思考、问题解决和情感态度等方面的数学发展水平的考查,主要通过学生在初中学段所学的数学基础知识、基本技能、基本思想方法和基本活动经验来实现。初中数学学业水平考试要重视对学生在初中阶段数学学习的结果与过程的评价,重视对学生数学思考能力和解决问题能力的发展性评价,重视对学生数学认知水平的评价;初中数学学业水平考试试卷要有效发挥选择题、填空题、计算(求解题)、证明题、开放性问题、应用性问题、阅读分析题、探索性问题及其它各种题型的功能,试题应该关注数感、符号意识、空间观念、几何直观、数据分析观念、运算能力、推理能力、模型思想、应用

3、意识和创新意识;试题设计必须与其评价的目标一致,增强与学生生活、社会实际的联系,考察学生从数学的视角发现问题、提出问题、分析问题和解决问题的能力。试题的解答要体现数学的思维活动方式,如观察、实验、猜想、验证、推理等等。二、考试内容和要求(一)考试内容初中数学学业水平考试应以数学课程标准所规定的四大学习领域,即数与代数、图形与几何、统计与概率、综合与实践的内容为依据,主要考查学生在知识技能、数学思考、问题解决和情感态度四个方面的发展状况。1. 知识技能体验从具体情境中抽象出数学符号的过程,理解有理数、实数、代数式、方程、不等式、函数;掌握必要的运算(包括估算)技能;探索具体问题中的数量关系和变化

4、规律,掌握用代数式、方程、不等式、函数进行表述的方法。探索并掌握相交线、平行线、三角形、四边形和圆的基本性质与判定,掌握基本的证明方法和基本的作图技能;探索并理解平面图形的平移、旋转、轴对称;认识投影与视图;掌握平面直角坐标系,能运用坐标法分析和解决问题。体验数据收集、处理、分析和推断过程,理解抽样方法,体验用样本估计总体的过程;进一步认识随机现象,能计算一些简单事件的概率。参与综合实践活动,积累综合运用数学知识、技能和方法等解决简单问题的数学活动经验。2. 数学思考通过用代数式、方程、不等式、函数等表述数量关系的过程,体会模型的思想建,立符号意识;在研究图形性质和运动、确定物体位置等过程中,

5、进一步发展空间观念经历借助图形思考问题的过程,初步建立几何直观。了解利用数据可以进行统计推断,形成数据分析观念;感受随机现象的特点。体会通过合情推理探索数学结论、运用演绎推理加以证明的过程,在多种形式的数学活动中,发展逻辑推理的能力。能独立思考,体会数学的基本思想和思维方式。3. 问题解决初步学会在具体的情境中从数学的角度发现问题和提出问题,并综合运用数学知识、方法、思想和经验解决简单的实际问题,增强应用意识,提高实践能力。经历从不同角度分析问题和解决问题的过程,体验解决问题方法的多样性,掌握分析问题和解决问题的一些基本方法。4. 情感态度积极参与数学活动,对数学有好奇心和求知欲。在数学学习过

6、程中,体验获得成功的乐趣,锻炼克服困难的意志,建立自信心。体会数学的特点,了解数学的价值,感受数学文化的魅力。养成认真勤奋、独立思考、合作交流、反思质疑等学习习惯,形成坚持真理、修正错误、严谨求实的科学态度。(二)考试要求与目标数学课程标准规定了初中数学的教学要求与教学目标,这也是初中数学学业水平考试的要求与目标。1. 考试要求(1)使学生获得适应未来社会生活和进一步发展所必需的数学知识、必要的应用技能以及基本的数学思想方法和数学活动经验;(2)初步学会运用数学的思维方式观察、分析实际问题,解决生活和其他学科学习中的问题,增强应用数学的意识;(3)体会数学与自然及人类社会的密切联系,了解数学的

7、价值,增强对数学的理解和学好数学的信心;(4)具有初步的创新精神和实践能力,在情感态度和一般能力方面都能得到充分发展。2. 考试目标结果目标(1)了解:从具体实例中知道或举例说明对象的有关特征;根据对象的特征,从具体情境中辨认或者举例说明对象;(2)理解:描述对象特征和由来,阐述此对象与有关对象之间的区别和联系;(3)掌握:在理解的基础上,把对象用于新的情境;(4)运用:综合使用已掌握的对象,选择或创造适当的方法解决问题。过程目标(5)经历:在特定的数学活动中,获得一些感性认识;(6)体验:参与特定的数学活动、主动认识或验证对象的特征、获得一些经验;(7)探索:独立或与他人合作参与特定的数学活

8、动,理解或提出问题,寻求解决问题的思路方法,发现对象的特征及其与相关对象的区别和联系,获得一定的理性认识。这些要求与目标从不同角度表明了初中数学学业水平考试要求的层次性。三)具体内容与考试要求细目列表具体内容知识技能要求过程性要求(1)(2)(3)(4)(5)(6)(7)数与式有理数的意义,用数轴上的点表示有理数。V相反数、绝对值的意义。V求相反数、绝对值,有理数的大小比较。V乘方的意义。V有理数加、减乘除乘方及简单混合运算(三步以内为主)运用运算律进行简化运算。V运用有理数的运算解决简单的问题。V平方根、算术平方根、立方根的概念及其表示。V用平方运算求百以内整数的平方根,用立方运算求百以内整

9、数(对应的负整数)的立方根,用计算器求平方根与立方根。V无理数和实数的概念,实数与数轴上的点对应。V实数的相反数和绝对值。V用有理数估计一个无理数的大致范围。V近似数的概念。V在解决实际问题中,用计算器进行近似计算,并按问题的要求对结果取近似值。V二次根式、最简二次根式的概念。V二次根式(根号下仅限于数字)的加、减、乘、除简单运算。V实数的简单四则运算。V用字母表示数,列代数式表示简单问题的数量关系。V代数式的实际意义与几何背景。V求代数式的值。V整数指数幕及其性质。V用科学记数法表示数(含计算器)V整式的概念(整式、单项式、多项式)V合并冋类项和去括号的法则。V整式的加、减、乘(其中的多项式

10、相乘仅指一次式之间以及一次式与二次式相乘)运算V乘法公式的推导及简单计算。V乘法公式的几何背景。V因式分解的概念。V用提公因式法、公式法(直接用公式不超过二次)进行因式分解(指数是正整数)V分式和最简分式的概念。V约分、通分。V简单分式的运算(加、减、乘、除)V方程与不等式估计方程的解。V等式的基本性质。V一兀一次方程及解法。V二兀一次方程组及解法。V可化为一兀一次方程的分式方程(方程中分式不超过2个)及解法。V一兀二次方程(数字系数)的解法(配方法、公式法、因式分解法)。V一兀二次方程根的判别式判别方程是否有实根和两个实根是否相等。V一兀二次方程的根与系数的关系。V根据具体问题中的数量关系列

11、方程(组)并解决实际问题。VV根据具体问题的实际意义,检验方程(组)的解是否合理。V根据具体问题中的数量关系列一兀一次不等式并解决简单实际问题。V不等式的基本性质。VV解一兀一次不等式。V解由两个一兀一次不等式组成的不等式组。V用数轴表示一兀一次不等式(组)的解集。V函数简单实际问题中的函数关系的分析。V具体问题中的数量关系及变化规律。V常量、变量的意义。V函数的概念及三种表示法。V简单函数及简单实际问题中的函数的自变量取值范围,函数值。V使用适当的函数表示法,刻画实际问题中变量之间的关系。V结合对函数关系的分析,对变量的变化情况进行初步讨论。V一次函数的意义及表达式。VV一次函数的图象及性质

12、。V正比例函数。VV用待定系数法确定一次函数的表达式。V一次函数与二兀一次方程的关系。V用一次函数解决实际问题。V反比例函数的意义及表达式。VV反比例函数的图象及性质。V用反比例函数解决简单实际问题。V二次函数的意义及表达式。VV二次函数的图象及性质。V确定二次函数图象的顶点坐标、开口方向及其对称轴。V用二次函数解决简单实际问题。V用二次函数图象求一兀二次方程的近似解。V图形的认识点、线、面。V比较线段的长短、线段的和、差以及线段中点的意义。V“两点确定一条直线”,“两点之间线段最短”。V两点间距离的意义,度量两点间的距离。V角的概念。V角的大小比较,角的和与差的计算。V角的单位换算。V角平分

13、线及其性质。VV补角、余角、对顶角的概念。V对顶角相等、同角或等角的余角(补角相等。VV垂线、垂线段的概念、画法及性质,点到直线的距离。VV“过一点有且只有一条直线与已知直线垂直”。V线段垂直平分线及性质。VV同位角、内错角、同旁内角。V平行线的概念。V“过直线外一点有且只有一条直线与这条直线平行”。V平行线的性质和判定。VV平行线间的距离。VV画平行线。V三角形的有关概念。V三角形的内角和定理及其推论。V三角形的任意两边之和大于第三边。V画任意三角形的角平分线、中线、高。V三角形的稳定性。V三角形中位线的性质。V全等三角形的概念。V'V全等三角形中的对应边、对应角。V两个三角形全等的

14、性质和判定。V等腰三角形的有关概念。V等腰三角形的性质及判定。VV等边三角形的性质及判定。VV直角三角形的概念。V直角三角形的性质及判定。VV勾股定理及其逆定理的运用。VV三角形重心的概念。V多边形的有关概念。V多边形的内角和与外角和公式。VV正多边形的概念。V平行四边形、矩形、菱形、正方形的概念及它们之间的关系。V平行四边形的性质及判定。VV矩形、菱形、正方形的性质及判定。VV圆及其有关概念。V垂径定理。V弧、弦、圆心角的关系。V点与圆、直线与圆的位置关系。VV圆的性质,圆周角与圆心角的关系、直径所对圆周角的特征。VV“圆内接四边形的对角互补”。V三角形的内心与外心。V切线的概念。V切线的性

15、质与判定。VV切线长定理。V弧长公式,扇形面积公式。V正多边形与圆的关系。V圆锥的侧面积和全面积。V利用尺规基本作图。V利用基本作图作三角形。V过平面上的点作圆。VV尺规作图的步骤(已知、求作)。V图形的变化基本几何体的三视图。V基本几何体与其三视图、展开图之间的关系。V直棱柱、圆锥的侧面展开图,根据展开图想象和制作实物模型。VV中心投影和平行投影。V轴对称的概念。V轴对称的基本性质。VV利用轴对称作图,简单图形间的轴对称关系。VV基本图形的轴对称性及其相关性质。VV轴对称图形的欣赏。V平移的概念,平移的基本性质。VV旋转的概念,旋转的基本性质。VV平行四边形、圆的中心对称性。V中心对称、中心

16、对称图形的概念和基本性质。VV轴对称、平移、旋转在现实生活中的应用。VV用轴对称、平移和旋转进行图案设计。V比例的基本性质,线段的比,成比例线段,黄金分割。V图形的相似。V相似图形的性质。VV两个三角形相似的性质及判定,直角三角形相似的判定。VV位似及应用。V相似的应用。V锐角三角函数(正弦、余弦、正切)V特殊角(30。、45。、60。)的三角函数值。V使用计算器求已知锐角三角函数的值,由已知三角函数值求它对应的锐角。V锐角三角函数的简单应用。V图形与坐标平面直角坐标系;在给定的直角坐标系中,根据坐标描出点的位置、由点的位置写出它的坐标。V建立适当的直角坐标系描述物体的位置。V图形的变换与坐标

17、的变化。VV在平面上用方位角和距离刻画两个物体的相对位置。V用不冋的方式描述图形的运动或者坐标的规律、确定物体的位置。V图形与证明证明的必要性。V定义、命题、定理的含义,互逆命题的概念。V反例的作用及反例的应用。V反证法。V证明的格式及依据。V全等三角形的性质定理和判定定理。V平行线的性质定理和判定定理。V三角形内角和定理及推论。V直角三角形全等的判定定理。V角平分线性质定理及逆定理。V垂直平分线性质定理及逆定理。V三角形中位线定理。V等腰三角形、等边三角形、直角三角形的性质和判定定理。V平行四边形、矩形、菱形、正方形的性质和判定定理。V统计数据的收集、整理、描述和分析,用计算器处理较复杂的统

18、计数据。VV抽样的必要性,简单随机抽样。V总体、个体、样本的概念。VV制作扇形统计图,用统计图直观、有效地描述数据。V平均数的意义,中位数、众数、加权平均数的计算,一组数据集中趋势的描述V一组数据的离散程度的表示,方差的计算。VV频数、频率的概念。V画频数分布直方图和频数折线图,并解决简单实际问题。V频数分布的意义和作用。V用样本估计总体的思想,用样本的平均数和方差估计总体的平均数和方差。VV根据统计结果作出合理的判断和预测,统计对决策的作用。VV应用统计知识与技能,解决简单的实际问题。V概率概率的意义。V用列举法求简单事件的概率。V用频率估计概率。V综合与实践结合实际情境,经历设计解决具体问

19、题的方案,并加以实施的过程,体验建立数学模型、解决问题的过程,并在此过程中,尝试发现和提出问题。V会反思参与活动的全过程,将研究课题的结果形成报告或小论文,并能进行交流,进一步获得数学活动经验。V通过对有关问题的探讨,了解所学知识(包括其他学科知识)之间的关联,进一步理解有关知识,发展应用意识和创新意识。V三、试卷结构(一)题型结构1.选择题:10个小题左右,占分比例约为25%;2.填空题:8个小题左右,占分比例约为20%;3. 解答题:8个小题左右,占分比例约为55%,解答题包括计算题、证明题、应用性问题、实践操作题、拓展探究题等不同形式。命题时应设计结合现实情境的具有开放性、探索性的问题,

20、杜绝人为编造的繁难计算题和证明题。(二)内容结构1.各能力层级试题比例:了解约占10%,理解约占20%,掌握约占60%,灵活运用约占10%;2.各知识板块试题比例:数与代数约占50%,空间与图形约占35%,统计与概率约占15%;3.考试内容覆盖面要求达到数学课程标准所规定考查内容的80%。(三)难度结构试卷整体难度系数控制在0.75左右,容易题约占70%,稍难题约占15%,较难题约占15%。四、题型示例下面所示例题,大部分选自近年的初中学业水平考试试卷,部分稍作修改,仅供参考。一)选择题例1函数y=JX2中自变量X的取值范围是()x3A.x>2Bx>2Cx>2且x丰3D.x丰

21、3【答案】C.【说明】本题属于“数与代数”板块内容,能力要求为“掌握”层级,预估难度为0.80-0.90,为容易题.例2如图,AB是工O的直径,弦CD丄AB,于点E,OC=5cm,CD=8cm,贝UAE=CA.8cmB.5cmC.3cm【答案】A.D.2cmB【说明】本题属于“图形与几何”板块内容,能力要求为“掌握”层级,预估难度为0.700.80,为稍难题.例3如图,往竖直放置的在A处由短软管连接的粗细均匀细管组成的“U”形装置中注入一定量的水,水面高度为6cm,现将右边细管绕A处顺时针方向旋转60°到AB位置,则AB中水()柱的长度约为A.4cmB.63cmC.8cmD.12cm

22、【答案】C.【说明】本题属于“图形与几何”板块内容在求解实际问题中的应用,能力要求为“掌握”层级,预估难度为0.700.80,为稍难题.例4根据李飞与刘亮射击训练的成绩绘制了如图所示的折线统计图.根据图中所提供的信息,若要推荐一位成绩较稳定的选手去参赛,应推荐()A.李飞或刘亮B.李飞C.刘亮D.无法确定【答案】C.【说明】本题属于“统计与概率”板块内容,能力要求为“理解”层级,预估难度为0.800.90,为容易题.例5如图,抛物线y=ax2+bx+c与x轴交于点A(-1,0),与y轴的交点在(0,2),(0,)之间(含这两点),顶点坐标为(1,n),则下列结论: 3a+b<0; -1&

23、lt;a<-1;3 对于任意实数m,a+b>am2+bm总成立; 关于x的方程ax2+bx+c=n-1有两个不相等的实数根.其中结论正确的个数为A.1个B.2个C.3个D.4个【答案】D.【说明】本题属于“数与代数”板块内容综合题,能力要求为“灵活运用”层级,预估难度为0.500.60,为较难题.(二)填空题例6因式分解:x3y2-x3=.【答案】x3(y+1)(y-1).【说明】本题属于“数与代数”板块内容,能力要求为“掌握”层级,预估难度为0.800.90,为容易题.例7如图,矩形ABCD的边AB与x轴平行,顶点A坐标为(2,1),点B与点D都在反比例函数y=6(x0)x的图象

24、上,则矩形ABCD的周长为.【答案】12.【说明】本题属于“数与代数”板块和“图形与几何板块”综合题,能力要求为“灵活运用”层级,预估难度为0.700.80,为稍难题.例8如图,将矩形ABCD沿EF折叠,使点B落在AD边上的点G处,点C落在点H处,已知ZDGH=30。,连接BG,则ZAGB=a-E【答案】75°.【说明】本题属于“图形与几何”板块内容,能力要求为“掌握”层级,预估难度为0.600.70,为较难题.(三)解答题例9计算:(-1)2019一J8+(兀-3)o+4cos45°-【答案】原式=-12【说明】本题属于“数与代数”板块内容,能力要求为“掌握”层级,预估难

25、度为0.800.90,为容易题.例10已知:如图,在四边形ABCD中,ADBC,点E为CD边上一点,AE与BE分别为ZDAB和ZCBA的平分线.(1)请你添加一个适当的条件,使得四边形ABCD是平行四边形,并证明你的结论;(2)作线段AB的垂直平分线交AB于点O,并以AB为直径作PO(要求:尺规作图,保留作图痕迹,不写作法);(3)在的条件下,0交边AD于点F,连接BF交AE于点G,若AE=4,sinZAGF=4,求一0的半径.5'ZAEB=90o./AB为:O的直径,点F在;:O上,ZAFB=90o,ZFAG+ZFGA=90o,/AE平分ZDAB,ZFAG=ZEAB,ZAGF=ZAB

26、E,4 AEsinZABE=sinZAGF=_=_,5 AB/AE=4,AB=5.故圆O的半径为2.5.【说明】本题属于“图形与几何”板块内容,能力要求为“掌握”层级,预估难度为0.700.80,为稍难题.例11某校体育组为了解全校学生“最喜欢的一项球类项目”,随机抽取了部分学生进行调查,下面是根据调查结果绘制的不完整的统计图:请你根据统计图回答下列问题:(1)喜欢乒乓球的学生所占的百分比是多少?并请补全条形统计图;(2)请你估计全校500名学生中最喜欢“排球”项目的有多少名?(3)在扇形统计图中,“篮球”部分所对应的圆心角是多少度?(4)篮球教练在制定训练计划前,将从最喜欢篮球项目的甲、乙、

27、丙、丁四名同学中任选两人进行个别座谈,请用列表法或树状图法求抽取的两人恰好是甲和乙的概率.【答案】(1)T20F40%=50(人),喜欢乒乓球的学生人数为50-8-20-6-2=14人,喜欢乒乓球的学生所占的百分比是14F50X100%=28%.(补图略).(2)500X12%=60人.(3)360°X40%=144°.(4)画树状图为:乙丙丁A甲丙丁丙/Tv甲乙丁甲乙丙共有12种等可能的结果,其中抽取的两人恰好是甲和乙有两种,所以21P=丄二126【说明】本题属于“统计与概率”与“数与代数”板块内容综合题,能力要求为“掌握”层级,预估难度为0.750.85,为容易题.例12我们不妨约定:对角线互相垂直的凸四边形叫做“十字形”.(1)在“平行四边形、矩形、菱形、正方形”中,一定是“十字形”的在凸四边形ABCD中,AB=AD且CB丰CD,则该四边形“十字形”.(填“是”或“不是”)(2)如图1,A,B,C,D是半径为1的?O上按逆时针方向排列的四个动点,AC与BD交于点E,ZADB-ZCDB=ZA

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论