应用时间序列分析习题答案解析_第1页
应用时间序列分析习题答案解析_第2页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第二章习题答案2.1(1) 非平稳(2) 0.01730.7000.4120.148-0.079-0.258-0.376(3) 典型的具有单调趋势的时间序列样本自相关图AutocorrelationaCorreiaticin精品资料1.00000illillillilliIiillillillalaillilill11illalaillalaillilill1|ii|lipI|HT!TT!0.70000illillillillillillillillill11ill11illiinihiii|n|n|n|i111|11T*T1110.41212illillillillillillillillT

2、TTTT0.14848-.07879脚-.25758illillillillill.iTiTu-.37576iiiiiiiiiiiiiiiiiiiiiiia!Il2.2(1) 非平稳,时序图如下(2) -(3)样本自相关系数及自相关图如下:典型的同时具有周期和趋势序列的样本自相关图AutocarrelationsCorrelation-1887654321012345678811.00000illillillillillillillillillillillillillillillillillillillilli|ii|ii|upipi|ilUITITllUIT0.907E1illiliilul

3、lilnhiliillilliInlullilnhiliillillill1|11|ll|11|11|11|111H1I|11|ll|11|1ipiIllIH|11111110.72171illillillillill111111illillill111illill1IInil(11111(1Ijll|1|0.512E2illill111illill111111illillill|1111110.34982illillillillillillillTTTiT.0.24C90iiiiiiiiiiiiiiiTTiT.0.20809轉榊.0.21021栉榊0.2G429illiliilullillT

4、TiT.0.36433iiiiiiiiiiiiiiiiiiiii0.48472illillillillillillillillillillininin|ii|n|ii|n|i111111.0.58456iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii|ii|ii|ii|ii|ii|ii|iTii|n0.G0198illillillillillillillillillillillill1|11|ll|11|11|11|111H|11|11|ll|11|10.51841illillillillillillillillillill1JI1IlliIlliIjllIlliI1

5、JI1JI11|0.36056illillillillill1II111|10.20671O.OS1380.00135-.03248:十;-.02710出0.011240.08275艸:0.17011笊栅i.0.24320illillillillillIjll11111!1|10.25252illillillillill|ipmarkstwowtandarderrors2.3(1)自相关系数为:0.20230.0130.042-0.043-0.179-0.251-0.0940.0248-0.068-0.0720.0140.1090.2170.3160.0070-0.0250.075-0.141

6、-0.204-0.2450.0660.0062-0.139-0.0340.206-0.0100.0800.118(2) 平稳序列(3) 白噪声序列2.4LB=4.83,LB统计量对应的分位点为0.9634,P值为0.0363。显著性水平=0.05,序列不能视为纯随机序列。2.5(1) 时序图与样本自相关图如下AutocorrelationaIillillilliIiillil.iriiTiiTiiTiiTuTiIiillillillallillillillillillillilliiii!1!1!1111nT1T1111uillillliill11ill11illillillillillill

7、11i|iiTiipi|iiTin!11ITill1111111illallillillillilli11ill11bi|ia|iigii|ai|i|ii|ii|i|ii|11|ii|i111illillillIIiillil1-riiriiTiiTiiTiiTiiTi IiillillillilliIiillalaillallillilillilliIiillillill11 infillii|i1111111111111111iTT,T1TnI11!1T1T,T,T, Iiillillillillillill1ill1illilillillill |1l(ll|11|11|11|1111|

8、1Bill11|Bl|l111111 Ilillillillillillill11illTbiniTniTi1T11|htb1T1sum.IlillillillillillillTTiTT. Ilill11iillilli1111i1illall111il |1l|ll|11|11|11|111ll|B1|1Bill!11|. Ilillillillillillillillillillillillillillill infillii|iiT11111111111111iTT,T1T1111-1907C54321O1234EG7091WORD格式.分享2)非平稳3)非纯随机2.6(1) 平稳,非

9、纯随机序列(拟合模型参考:ARMA(1,2)(2) 差分序列平稳,非纯随机第三章习题答案(10.7)E(x)=0tE(x)=0t3.1解:E(x)二0.7-E(x)+E(s)tt1ttt(10.7B)xx=(10.7B)-is=(1+0.7B+0.72B2+)sttt1Var(x)=c2=1.9608c2t10.49ssp=e2p=0.490=0210223.2解:对于AR(2)模型:p=0p+0P=0+0P二0.5J11021121p=0p+0p=0p+0=0.321120112解得:0=7/15J0=1/1523.3解:根据该AR(2)模型的形式,易得:E(x)=0t原模型可变为:x=0.

10、8x0.15x+stt1t2tVar(x)=t102c2(1+0)(100)(1+00)21212(1+0.15)(10.15)(10.8+0.15)(1+0.8+0.15)c2=1.9823c2p=0/(10)=0.6957112Jp=0p+0p=0.406621120p=0p+0p=0.2209312210=p=0.6957111J0=0=0.152220=0333.4解:原模型可变形为:(1-B-cB2)x=tt由其平稳域判别条件知:当10i1,e+e1且e-e1时,模型平稳。22121由此可知C应满足:丨c11,c-11且c+11即当一1c1,2模型非平稳;九二1.37381九=-0.

11、873622)|e|=0.31,2e+e=0.81,21=-1.41,模型平稳。九二0.61九=0.523)|0|=0.31,20+021=0.61,0-02=-1.21,1模型可逆。九=0.45+0.2693i1九=0.450.2693i24)|0|=0.41,20+021=-0.91,21模型不可逆。九=0.25691=-1.55695)|e|=0.71,1模型平稳;九=0.71|0|=0.61,1模型可逆;九二0.616)|e|=0.51,2e+e=-0.31,2121模型非平稳。九=0.41241九=-1.2124210|=1.11,模型不可逆;尢=1.1。113.12解法1:G=1,

12、G=eG-0=0.6-0.3=0.3,01101GGk-1G=0.3X06k-1,k2k1k-111所以该模型可以等价表示为:X=+左0.3X0.6kttt-k-1k=0解法2:(1-0.6B)x=(1-0.3B)8ttx=(1-0.3B)(1+0.6B+0.62B2+)&tt=(1+0.3B+0.3*0.6B2+0.3*0.62B3+)&=s+兰0.3*0.6j-18tG二1,G=0.3*0.6j-10j3.13解:E(B)x=E3+0(B)8n(1-0.5)2E(x)=3tttE(x)二12。t113.14证明:已知0二,0二,根据ARMA(1,1)模型Green函数的递推公式得:1214

13、G=1,G=0G-0=0.50.25=02,G=0G=k-1G=协+1,k2011011k1k-1111Pk3.153.16艺GG02+艺0jj+1114=0=-艺G21+艺02(j+1)j1j=0j=1艺GG艺G(0Gjj+kj1j+k-1j=011-0202-04+051=114041-02+041+1111-0217=0.2726j=01)解:成立1)x艺G2jj=02)成立-10=0.3*(x)艺GGjj+k-1-=0j=01%j=01Pk-1j=03)成立4)不成立-10)+8,t-1txT=9.6=9.88T+1(1)=E(x)=E10+0.3*(x-10)+8t+1Tx(2)=E

14、(x)=E10+0.3*(x-10)+8=9.964Tt+2T+1T+2x(3)=E(x)=E10+0.3*(x-10)+8=9.9892Tt+3T+2T+3已知AR(1)模型的Green函数为:G=0j,j=1,2,j1WORD格式分享e(3)=Gs+Gs+Gs=w+028T0t+31t+22t+1t+31t+21t+1Vare(3)二(1+0.32+0.092)*9二9.8829Tx的95%的置信区间:9.9892-1.96*9.8829,9.9892+1.96*.98829t+3即3.8275,16.1509(2)s二x-X(1)二10.5-9.88二0.62T+1T+1TX(1)二E(

15、X)二0.3*0.62+9.964二10.15T+1t+2X(2)二E(X)二0.09*0.62+9.9892二10.045T+1t+3Vare(2)二(1+0.32)*9二9.81T+2X的95%的置信区间:10.045-1.96乂哂981,10.045+1.96911t+3即3.9061,16.1839。3.17 (1)平稳非白噪声序列(2) AR(1)(3) 5年预测结果如下:FareceistsforYarieiblexbsForecastStdError35SConfidenceLimits6490.156322.729445.6075134.7050S583.888223.8863

16、37.1698130.60656681.908323.944034.9789128.837667SI.82923.354734.33S5128.332S881.085323.955834.1329128.03773.18 (1)平稳非白噪声序列(2) AR(1)(3) 5年预测结果如下:ForecastsforvariablexObsForecastStdError95XConfidenceLimits750.70460.27710.16151.247G760.7956D.29570.21611.3751770.82950.29810.24521.4139780.8421D.29850.257

17、11.4271790.84600.29850.28171.43193.19 (1)平稳非白噪声序列(2) MA(1)(3) 下一年95%的置信区间为(80.41,90.96)3.20 (1)平稳非白噪声序列(2)ARMA(1,3)序列第四章习题答案4.1解:八1X=(x+x+x+x)T+14TT-1T-2T31,5551(x+x+x+x)=x+x+x+x4T+1TT-1T216T16T-116T216T-35八,以,在t+2中t与XT-1前面的系数均为16。4.2解由x=ax+(1tt)xVttt-1x=ttx+(1tt)xt+1t+1t代入数据得x=5.25tt+5(1tt)Vt5.26=5

18、.5tt+(1tt)xvt解得x=5.1Vttt=0.4(舍去ttl的情况)4.3 解:(1)11x=(x+x+x+x+x)=(13+11+10+10+12=11.221520191817165精品资料WORD格式.分享x=(x+x+x+x+x)=!(11.2+13+11+10+10=11.0422521201918175x04x亠06XX=xX=X=X(2)利用兀厂04二十0.6Xt1且初始值X0一X1进行迭代计算即可。另外,22一21一20该题详见Excel。11.792773)在移动平均法下:X-X+-昱X215205ii16X-X+-X+-昱X225215205ii171116a+x在

19、指数平滑法中:x2255525xx0.4x+0.6x21202019b0.40.16。f::.b一a0.4254.4解:根据指数平滑的定义有(1)式成立,(1)式等号两边同乘(1Q)有(2)式成立xtu+(t一10(1a)+(t一2)a(1a)2+(t2)a(1a)3+-(1)t(1a)xta(1a)+(t1)a(1a)2+(t2)a(1a)3+.(2)t-(2)得axta一a(1一a)一a(1一a)2一xt(1a)(1a)21at1aat1。a则limts4.5该序列为显著的线性递增序列,利用本章的知识点,可以使用线性方程或者holt两参数指数平滑法进行趋势拟合和预测,答案不唯一,具体结果略

20、。4.6该序列为显著的非线性递增序列,可以拟合二次型曲线、指数型曲线或其他曲线,也能使用holt两参数指数平滑法进行趋势拟合和预测,答案不唯一,具体结果略。4.7本例在混合模型结构,季节指数求法,趋势拟合方法等处均有多种可选方案,如下做法仅是可选方法之一,结果仅供参考(1)该序列有显著趋势和周期效应,时序图如下精品资料(2)该序列周期振幅几乎不随着趋势递增而变化,所以尝试使用加法模型拟合该序列:x二T+S+1。(注:如果用乘法模型也可以)tttt首先求季节指数(没有消除趋势,并不是最精确的季节指数)0.9607220.9125751.0381691.0643021.1536271.116566

21、1.042920.9841620.9309470.9385490.9022810.955179消除季节影响,得序列y=x-Sx,使用线性模型拟合该序列趋势影响(方法不唯一):tttT=97.70+1.79268t,t二1,2,3,t(注:该趋势模型截距无意义,主要是斜率有意义,反映了长期递增速率)得到残差序列1=xSx=yT,残差序列基本无显著趋势和周期残留。tttttX3020100102030aiJAN48aiJAM5001JAN5201JAN5401JAN5601JAN58预测1971年奶牛的月度产量序列为X=T+Sx,t=109,110,,工。ttmodG12)得到771.502183

22、9.9249739.517800.4953829.4208849.5468914.0062889.7989764.9547772.0807748.4289787.3327(3)该序列使用x11方法得到的趋势拟合为D12FinalTrendCycle-HendersonCurve13-termMovingAveragertppliedI/CRatiois1.,159YesirJANFEBMARAPR川M196260S.307608.002809.997612.172814.4226ie.62S1963613.380620.197622.556626.132630.059638.273196464

23、5.771649.468852.4866E4.405S55.241655.5521365672.427673.544673.923673.773673.316672.7211966604.132689.462894.546699.150703.20470S.735196772S.303727.237728.134729.363730.844732.615196S740.451741.853743.154744.442745.822747.51&1969751.978752.171753.571756.280759.856763.5181970771.350771.557772.252773.5

24、71776.OSS773.771脱690.900692.614634.518636.588688.761700.926DIEFinalTrendCycle-HendesonGurv亡12一t亡rmMijvingAverageMppIiedI/CRatiois1.159YeeirJULmSEPOCTmDECTotal1962618.744620.335621.173621.202620.591619.7717389.341963635.SGI636.446637.006637.7G9839.393642.1557579.731964656.079657.423659.903663.336667.

25、078670.3107887.051965672.119671.764671.959673.029S75.423679.2108053.21isee709.932713.173716.547719.787722.667724.8508484.13734.302735.554736.4&9737.289738.073733.105S795.351968743.5W751.47D752.880753.495753.296752.5818976.471969766.763763.256770.681771.206771.284771.2889157.851970784.011788.01D791.3

26、79793.GG3795.195795.97G9392.84Avs.702.980704.826706.444707.864709.222710.584Total:7574GMean:701.35S.D.:56.792趋势拟合图为4.8这是一个有着曲线趋势,但是有没有固定周期效应的序列,所以可以在快速预测程序中用曲线拟合(stepar)或曲线指数平滑(expo)进行预测(trend=3)。具体预测值略。第五章习题5.1拟合差分平稳序列,即随机游走模型X=x+,估计下一天的收盘价为289tt-1t5.2拟合模型不唯一,答案仅供参考。拟合ARIMA(1,1,O)模型,五年预测值为:Fcirecas

27、tsforablexbsForecastStdError35蛊ConfidenceLimits61341444.41267372.7986326993.3929355894.832362349S21.846315413.404323632.0566$76211.C3&0G3357040.971118817.529320159.2928393922.649464363454.004023594.255317210.1143409697.893865369499.988127836.917314940.G341424059.34215.3 ARIMA(l,l,O)x(1,1,0)125.4 (1)

28、AR(1),(2)有异方差性。最终拟合的模型为x=7.472+8tt8=-0.55958+vh=11.9719+0.4127v2tt-15.5(1)非平稳(2)取对数消除方差非齐,对数序列一节差分后,拟合疏系数模型AR(1,3)所以拟合模型为InxARIMA(1,3),1,0)(3)预测结果如下:bsForecastStdError85ConfidenceLimits737.52140.04057.44207.6007747.54010.06827.40647.6788757.51450.09087.33637.6926767.49490.10297.29327.6968777.48160.1

29、1017.26587.697478?.48550.11537.25957.7115797.49350.12097.25657.73055.6原序列方差非齐,差分序列方差非齐,对数变换后,差分序列方差齐性。第六章习题6.1单位根检验原理略。例2.1原序列不平稳,一阶差分后平稳例2.2原序列不平稳,一阶与12步差分后平稳例2.3原序列带漂移项平稳例2.4原序列不带漂移项平稳例2.5原序列带漂移项平稳(=0.06),或者显著的趋势平稳。WORD格式.分享6.2(1)两序列均为带漂移项平稳(2) 谷物产量为带常数均值的纯随机序列,降雨量可以拟合AR(2)疏系数模型。(3) 两者之间具有协整关系(4)

30、谷物产量二23.5521+0.775549降雨量tt6.3(1)掠食者和被掠食者数量都呈现出显著的周期特征,两个序列均为非平稳序列。但是掠食者和被掠食者延迟2阶序列具有协整关系。即y-0x为平稳序列。tt-2(2)被掠食者拟合乘积模型:ARIMA(0,1,0)x(1,1,0),模型口径为:1WX=5t1+0.92874B5t拟合掠食者的序列为:y=2.9619+0.283994x+-0.47988tt-2tt-1未来一周的被掠食者预测序列为:ForecastsforvariablexObsForecastStdError95%ConfidenceLimits4970.792449.4194-26.0678167.652650123.835869.8895-13.1452260.816751195.098485.596827.3317362.865152291.637698.838797.9173485.357953150.0496110.5050-66.5363366.63555463.5621122.5322-176.5965303.72085580.3352133.4800-181.2807341.95115655.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论