第2章_电磁场的基本规律4_第1页
第2章_电磁场的基本规律4_第2页
第2章_电磁场的基本规律4_第3页
第2章_电磁场的基本规律4_第4页
第2章_电磁场的基本规律4_第5页
已阅读5页,还剩48页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第第 2 章章 电磁场与电磁波电磁场与电磁波电子科技大学电子科技大学编写编写高等教育出版社高等教育出版社 & 高等教育电子音像出版社高等教育电子音像出版社 出版出版12.6 麦克斯韦方程组麦克斯韦方程组VSVSJdd麦克斯韦方程组麦克斯韦方程组 宏观电磁现象所遵循的基本规律,是电宏观电磁现象所遵循的基本规律,是电 磁场的基本方程。磁场的基本方程。 2.6.1 麦克斯韦方程组的积分形式麦克斯韦方程组的积分形式SVSCSCSdVSDSBStBlEStDJlHd0dddd)(d第第 2 章章 电磁场与电磁波电磁场与电磁波电子科技大学电子科技大学编写编写高等教育出版社高等教育出版社 &

2、 高等教育电子音像出版社高等教育电子音像出版社 出版出版2DBtBEtDJH02.6.2 麦克斯韦方程组的微分形式麦克斯韦方程组的微分形式麦克斯韦第一方程,表明传导电麦克斯韦第一方程,表明传导电流和变化的电场都能产生磁场流和变化的电场都能产生磁场麦克斯韦第二方程,表麦克斯韦第二方程,表明变化的磁场产生电场明变化的磁场产生电场麦克斯韦第三方程表明磁场是麦克斯韦第三方程表明磁场是无源场,磁感线总是闭合曲线无源场,磁感线总是闭合曲线麦克斯韦第四方程,麦克斯韦第四方程,表明电荷产生电场表明电荷产生电场第第 2 章章 电磁场与电磁波电磁场与电磁波电子科技大学电子科技大学编写编写高等教育出版社高等教育出版

3、社 & 高等教育电子音像出版社高等教育电子音像出版社 出版出版32.6.3 媒质的本构关系媒质的本构关系 EDHBEJ)(0)()()(EHHtEEtEH代入麦克斯韦方程组中,有代入麦克斯韦方程组中,有0/EHEtHEtHE 限定形式的麦克斯韦方程限定形式的麦克斯韦方程(均匀媒质)(均匀媒质)各向同性线性媒质的本构关系为各向同性线性媒质的本构关系为第第 2 章章 电磁场与电磁波电磁场与电磁波电子科技大学电子科技大学编写编写高等教育出版社高等教育出版社 & 高等教育电子音像出版社高等教育电子音像出版社 出版出版4q 时变电场的激发源除了电荷以外,还有变化的磁场;而时变时变电场的激

4、发源除了电荷以外,还有变化的磁场;而时变磁场的激发源除了传导电流以外,还有变化的电场。电场和磁场的激发源除了传导电流以外,还有变化的电场。电场和磁场互为激发源,相互激发磁场互为激发源,相互激发。q 时变电磁场的电场和磁场不时变电磁场的电场和磁场不再相互独立,而是相互关联,再相互独立,而是相互关联,构成一个整体构成一个整体 电磁场。电磁场。电场和磁场分别是电磁场的电场和磁场分别是电磁场的两个分量。两个分量。q 在离开辐射源(如天线)的无源空间中,电荷密度和电流密在离开辐射源(如天线)的无源空间中,电荷密度和电流密度矢量为零,电场和磁场仍然可以相互激发,从而在空间形度矢量为零,电场和磁场仍然可以相

5、互激发,从而在空间形成电磁振荡并传播,这就是电磁波。成电磁振荡并传播,这就是电磁波。第第 2 章章 电磁场与电磁波电磁场与电磁波电子科技大学电子科技大学编写编写高等教育出版社高等教育出版社 & 高等教育电子音像出版社高等教育电子音像出版社 出版出版5q 在无源空间中,两个旋度方程分别为在无源空间中,两个旋度方程分别为tDHtBE, 可以看到两个方程的右边相差一个负号,而正是这个负号可以看到两个方程的右边相差一个负号,而正是这个负号使得电场和磁场构成一个相互激励又相互制约的关系。当磁场使得电场和磁场构成一个相互激励又相互制约的关系。当磁场减小时,电场的旋涡源为正,电场将增大;而当电场增大

6、时,减小时,电场的旋涡源为正,电场将增大;而当电场增大时,使磁场增大,磁场增大反过来又使电场减小。使磁场增大,磁场增大反过来又使电场减小。第第 2 章章 电磁场与电磁波电磁场与电磁波电子科技大学电子科技大学编写编写高等教育出版社高等教育出版社 & 高等教育电子音像出版社高等教育电子音像出版社 出版出版62.7 电磁场的边界条件电磁场的边界条件 什么是电磁场的边界条件什么是电磁场的边界条件? ? 为什么要研究边界条件为什么要研究边界条件? ?ne媒质媒质1 1媒质媒质2 2 如何讨论边界条件如何讨论边界条件? ? 实际电磁场问题都是在一定的物理空实际电磁场问题都是在一定的物理空间内发生的

7、,该空间中可能是由多种不同间内发生的,该空间中可能是由多种不同媒质组成的。边界条件就是不同媒质的分媒质组成的。边界条件就是不同媒质的分界面上的电磁场矢量满足的关系,是在不界面上的电磁场矢量满足的关系,是在不同媒质分界面上电磁场的基本属性。同媒质分界面上电磁场的基本属性。物理物理:由于在分界面两侧介质的特性参由于在分界面两侧介质的特性参 数发生突变,场在界面两侧也发数发生突变,场在界面两侧也发 生突变。麦克斯韦方程组的微分生突变。麦克斯韦方程组的微分 形式在分界面两侧失去意义,必形式在分界面两侧失去意义,必 须采用边界条件。须采用边界条件。数学数学:麦克斯韦方程组是微分方程组,其:麦克斯韦方程组

8、是微分方程组,其 解是不确定的,边界条件起定解的解是不确定的,边界条件起定解的 作用。作用。 麦克斯韦方程组的积分形式在不同媒麦克斯韦方程组的积分形式在不同媒质的分界面上仍然适用,由此可导出电磁质的分界面上仍然适用,由此可导出电磁场矢量在不同媒质分界面上的边界条件。场矢量在不同媒质分界面上的边界条件。第第 2 章章 电磁场与电磁波电磁场与电磁波电子科技大学电子科技大学编写编写高等教育出版社高等教育出版社 & 高等教育电子音像出版社高等教育电子音像出版社 出版出版7SVSCSCSdVSDSBStBlEStDJlHd0dddd)(d2.7.1 边界条件一般表达式边界条件一般表达式SnnnS

9、nDDeBBeEEeJHHe)(0)(0)()(21212121ne媒质媒质1 1媒质媒质2 2 分界面上的电荷面密度分界面上的电荷面密度 分界面上的电流面密度分界面上的电流面密度第第 2 章章 电磁场与电磁波电磁场与电磁波电子科技大学电子科技大学编写编写高等教育出版社高等教育出版社 & 高等教育电子音像出版社高等教育电子音像出版社 出版出版8 边界条件的推证边界条件的推证 (1 1) 电磁场量的法向边界条件电磁场量的法向边界条件令令h 0,则由,则由S1D2Dne媒质媒质1 1媒质媒质2 2hPSdSVDSdV12n()SDDeSS即即n12()SeDD同理同理 ,由,由d0SBS

10、在两种媒质的交界面上任取一在两种媒质的交界面上任取一点点P,作一个包围点,作一个包围点P 的扁平圆柱的扁平圆柱曲面曲面S,如图表示。,如图表示。n12()0eBB1n2nBB或或1n2nSDD或或第第 2 章章 电磁场与电磁波电磁场与电磁波电子科技大学电子科技大学编写编写高等教育出版社高等教育出版社 & 高等教育电子音像出版社高等教育电子音像出版社 出版出版9(2)电磁场量的切向边界条件电磁场量的切向边界条件12()SHHlJN l 在介质分界面两侧,选取如图所示的小环路,令在介质分界面两侧,选取如图所示的小环路,令h 0,则则由由l1H2Hne媒质媒质1 1媒质媒质2 2Nhd()

11、dCSDHlJSt故得故得n12()SeHHJnlN e l n12()eHHN l1t2tSHHJ或或n12()0eEE同理得同理得1t2tEE或或1212n()() ()HHlHHNel 第第 2 章章 电磁场与电磁波电磁场与电磁波电子科技大学电子科技大学编写编写高等教育出版社高等教育出版社 & 高等教育电子音像出版社高等教育电子音像出版社 出版出版101.1.两种理想介质分界面两种理想介质分界面上的边界条件上的边界条件n12n12n12n12()0()0()0()0eeeeDDBBEEHH2.7.2 两种常见的情况两种常见的情况 在两种理想介质分在两种理想介质分界面上,通常没有电

12、荷界面上,通常没有电荷和电流分布,即和电流分布,即JS0、S0,故,故 的法向分量连续的法向分量连续D 的法向分量连续的法向分量连续B 的切向分量连续的切向分量连续E 的切向分量连续的切向分量连续Hne媒质媒质1 1媒质媒质2 2 、 的法向分量连续的法向分量连续DBne媒质媒质1 1媒质媒质2 2 、 的切向分量连续的切向分量连续EH第第 2 章章 电磁场与电磁波电磁场与电磁波电子科技大学电子科技大学编写编写高等教育出版社高等教育出版社 & 高等教育电子音像出版社高等教育电子音像出版社 出版出版112. 理想导体表面上的边界条件理想导体表面上的边界条件nnnn00SSeDeBeEeH

13、J 理想导体表面上的边界条件理想导体表面上的边界条件 设媒质设媒质2为理想导体,则为理想导体,则E2、D2、H2、B2均为零,故均为零,故 理想导体理想导体:电导率为无限大的导电媒质:电导率为无限大的导电媒质 特征特征:电磁场不可能进入理想导体内:电磁场不可能进入理想导体内理想导体理想导体DSJH理想导体表面上的电荷密度等于理想导体表面上的电荷密度等于 的法向分量的法向分量D理想导体表面上理想导体表面上 的法向分量为的法向分量为0 0B理想导体表面上理想导体表面上 的切向分量为的切向分量为0 0E理想导体表面上的电流密度等于理想导体表面上的电流密度等于 的切向分量的切向分量H第第 2 章章 电

14、磁场与电磁波电磁场与电磁波电子科技大学电子科技大学编写编写高等教育出版社高等教育出版社 & 高等教育电子音像出版社高等教育电子音像出版社 出版出版12麦克斯韦方程组麦克斯韦方程组时变场时变场静态场静态场缓变场缓变场迅变场迅变场电磁场电磁场(EM)准静电场准静电场(EQS)准静磁场准静磁场(MQS)静磁场静磁场(MS)0t0t0tD0tB小结小结: 麦克斯韦方程适用范围麦克斯韦方程适用范围:一切宏观电磁现象。:一切宏观电磁现象。静电场静电场(ES)恒定电场恒定电场(SS)第第 2 章章 电磁场与电磁波电磁场与电磁波电子科技大学电子科技大学编写编写高等教育出版社高等教育出版社 &

15、高等教育电子音像出版社高等教育电子音像出版社 出版出版13第第 2 章章 电磁场与电磁波电磁场与电磁波电子科技大学电子科技大学编写编写高等教育出版社高等教育出版社 & 高等教育电子音像出版社高等教育电子音像出版社 出版出版14 本章内容本章内容 3.1 静电场分析静电场分析【1】 3.2 导电媒质中的恒定电场分析导电媒质中的恒定电场分析【1】 3.3 恒定磁场分析恒定磁场分析【1】 3.4 静态场的边值问题及解的惟一性定理静态场的边值问题及解的惟一性定理【1】 3.5 镜像法镜像法【1】 3.6 分离变量法分离变量法【1】 静态电磁场:静态电磁场:场量不随时间变化,包括:场量不随时间变

16、化,包括: 静电场、恒定电场和恒定磁场静电场、恒定电场和恒定磁场 时变情况下,电场和磁场相互关联,构成统一的电磁场时变情况下,电场和磁场相互关联,构成统一的电磁场 静态情况下,电场和磁场由各自的源激发,且相互独立静态情况下,电场和磁场由各自的源激发,且相互独立 第第 2 章章 电磁场与电磁波电磁场与电磁波电子科技大学电子科技大学编写编写高等教育出版社高等教育出版社 & 高等教育电子音像出版社高等教育电子音像出版社 出版出版153.1 静电场分析静电场分析 学习内容学习内容 3.1.1 静电场的基本方程和边界条件静电场的基本方程和边界条件 3.1.2 电位函数电位函数 3.1.3 导体系

17、统的电容与部分电容导体系统的电容与部分电容 3.1.4 静电场的能量静电场的能量 3.1.5 静电力静电力第第 2 章章 电磁场与电磁波电磁场与电磁波电子科技大学电子科技大学编写编写高等教育出版社高等教育出版社 & 高等教育电子音像出版社高等教育电子音像出版社 出版出版162. 边界条件边界条件0ED微分形式:微分形式:ED本构关系:本构关系:1. 基本方程基本方程0)()(21n21nEEDDeeS0ddlESDCSq积分形式:积分形式:0)(0)(2121EEeDDenn02t1tn2n1EEDDS或或2t1tn2n1EEDD或或3.1.1 静电场的基本方程和边界条件静电场的基本方

18、程和边界条件若分界面上不存在面电荷,即若分界面上不存在面电荷,即 ,则,则0S第第 2 章章 电磁场与电磁波电磁场与电磁波电子科技大学电子科技大学编写编写高等教育出版社高等教育出版社 & 高等教育电子音像出版社高等教育电子音像出版社 出版出版17介质介质2 2介质介质1 121212E1Ene212n21n12n2t1n1t21/tantanDDEEEE 在静电平衡的情况下,导体内部的电场为在静电平衡的情况下,导体内部的电场为0,则导体表面的,则导体表面的边界条件为边界条件为 0nnEDeeS0tnEDS或或 场矢量的折射关系场矢量的折射关系 导体表面的边界条件导体表面的边界条件第第

19、2 章章 电磁场与电磁波电磁场与电磁波电子科技大学电子科技大学编写编写高等教育出版社高等教育出版社 & 高等教育电子音像出版社高等教育电子音像出版社 出版出版即即静电场可以用一个标量函数的梯度来表示,静电场可以用一个标量函数的梯度来表示,标量函数标量函数 称为静称为静电场的标量电位或简称电位。电场的标量电位或简称电位。180E由由1. 电位函数的定义电位函数的定义E3.1.2 电位函数电位函数第第 2 章章 电磁场与电磁波电磁场与电磁波电子科技大学电子科技大学编写编写高等教育出版社高等教育出版社 & 高等教育电子音像出版社高等教育电子音像出版社 出版出版192. 电位的表达式电

20、位的表达式对于连续的体分布电荷,由对于连续的体分布电荷,由同理得,面电荷的电位:同理得,面电荷的电位: 1()( )d4VrrVCR故得故得点电荷的电位:点电荷的电位:( )4qrCR()1( )d4lCrrlCRd)1)(41d)1()(41d)(41)(3VRrVRrVRRrrEVVV3)1(RRR线电荷的电位:线电荷的电位:rrR( )1( )d4sCrrlCR第第 2 章章 电磁场与电磁波电磁场与电磁波电子科技大学电子科技大学编写编写高等教育出版社高等教育出版社 & 高等教育电子音像出版社高等教育电子音像出版社 出版出版203. 电位差电位差两端点乘两端点乘 ,则有,则有ldE

21、将将d)ddd(ddyyyyxxllE上式两边从点上式两边从点P到点到点Q沿任意路径进行积分,得沿任意路径进行积分,得关于电位差的说明关于电位差的说明 P、Q 两点间的电位差等于电场力将单位正电荷从两点间的电位差等于电场力将单位正电荷从P点移至点移至Q 点点 所做的功,电场力使单位正电荷由高电位处移到低电位处。所做的功,电场力使单位正电荷由高电位处移到低电位处。 电位差也称为电压,可用电位差也称为电压,可用U 表示。表示。 电位差有确定值,只与首尾两点位置有关,与积分路径无关。电位差有确定值,只与首尾两点位置有关,与积分路径无关。)()(ddQPlEQPQPP、Q 两点间的电位差两点间的电位差

22、电场力做电场力做的功的功第第 2 章章 电磁场与电磁波电磁场与电磁波电子科技大学电子科技大学编写编写高等教育出版社高等教育出版社 & 高等教育电子音像出版社高等教育电子音像出版社 出版出版21 静电位不惟一,可以相差一个常数,即静电位不惟一,可以相差一个常数,即)(CC选参考点选参考点令参考点电位为零令参考点电位为零电位确定值电位确定值( (电位差电位差) )两点间电位差有定值两点间电位差有定值 选择电位参考点的原则选择电位参考点的原则 应使电位表达式有意义。应使电位表达式有意义。 应使电位表达式最简单。若电荷分布在有限区域,通常取无应使电位表达式最简单。若电荷分布在有限区域,通常取无

23、 限远作电位参考点。限远作电位参考点。 同一个问题只能有一个参考点。同一个问题只能有一个参考点。4. 电位参考点电位参考点 为使空间各点电位具有确定值,可以选定空间某一点作为参考为使空间各点电位具有确定值,可以选定空间某一点作为参考点,且令参考点的电位为零,由于空间各点与参考点的电位差为确点,且令参考点的电位为零,由于空间各点与参考点的电位差为确定值,所以该点的电位也就具有确定值,即定值,所以该点的电位也就具有确定值,即第第 2 章章 电磁场与电磁波电磁场与电磁波电子科技大学电子科技大学编写编写高等教育出版社高等教育出版社 & 高等教育电子音像出版社高等教育电子音像出版社 出版出版22

24、 例例 3.1.1 求电偶极子的电位求电偶极子的电位. . 解解 在球坐标系中在球坐标系中211202104)11(4)(rrrrqrrqrcos)2/(cos)2/(222221rddrrrddrrcos22drr用二项式展开,由于,得用二项式展开,由于,得dr ,cos21drr302020444cos)(rrrrqdrrpep代入上式,得代入上式,得 表示电偶极矩,方向由负电荷指向正电荷。表示电偶极矩,方向由负电荷指向正电荷。dqp+q电偶极子电偶极子zodq1r2rr),(rP第第 2 章章 电磁场与电磁波电磁场与电磁波电子科技大学电子科技大学编写编写高等教育出版社高等教育出版社 &a

25、mp; 高等教育电子音像出版社高等教育电子音像出版社 出版出版23ErErrdd21sinCr 将将 和和 代入上式,代入上式,解得解得E线方程为线方程为ErE 由球坐标系中的梯度公式,可得到电偶极子的远区电场强度由球坐标系中的梯度公式,可得到电偶极子的远区电场强度)sincos2(430eerrq)sin11()(rerererErcos2Cr Crp204cos等位线等位线电场线电场线电偶极子的场图电偶极子的场图电场线微分方程电场线微分方程:等位线方程等位线方程:第第 2 章章 电磁场与电磁波电磁场与电磁波电子科技大学电子科技大学编写编写高等教育出版社高等教育出版社 & 高等教育电

26、子音像出版社高等教育电子音像出版社 出版出版24xyzL-L( , , ) z zddlzRz 解解 采用圆柱坐标系,令线电荷与采用圆柱坐标系,令线电荷与 z 轴相重合,中点位于坐轴相重合,中点位于坐标原点。由于轴对称性,电位与标原点。由于轴对称性,电位与 无关。无关。在带电线上位于在带电线上位于 处的线元处的线元 ,它,它到点到点 的距离的距离 ,则则22()Rzzddlz( , , )Pz 02201()d4()LlLrzzz2200ln() 4LlLzzzz220220()()ln4()()lzLzLzLzL 例例3.1.3 求长度为求长度为2L、电荷线密度为、电荷线密度为 的均匀带电线

27、的电位。的均匀带电线的电位。0l第第 2 章章 电磁场与电磁波电磁场与电磁波电子科技大学电子科技大学编写编写高等教育出版社高等教育出版社 & 高等教育电子音像出版社高等教育电子音像出版社 出版出版252222000220002( )lnlnln422lllLLLLLrLL 在上式中若令在上式中若令 ,则可得到无限长直线电荷的电位。当,则可得到无限长直线电荷的电位。当 时,上式可写为时,上式可写为 LRL 当当 时,上式变为无穷大,这是因为电荷不是分布在有限区时,上式变为无穷大,这是因为电荷不是分布在有限区域内,而将电位参考点选在无穷远点之故。这时可在上式中加上域内,而将电位参考点选在无

28、穷远点之故。这时可在上式中加上一个任意常数,则有一个任意常数,则有L 002( )ln2lLrC并选择有限远处为电位参考点。例如,选择并选择有限远处为电位参考点。例如,选择= a 的点为电位参的点为电位参考点,则有考点,则有002ln2lLCa 00( )ln2lar第第 2 章章 电磁场与电磁波电磁场与电磁波电子科技大学电子科技大学编写编写高等教育出版社高等教育出版社 & 高等教育电子音像出版社高等教育电子音像出版社 出版出版26在均匀介质中,有在均匀介质中,有5. 电位的微分方程电位的微分方程在无源区域,在无源区域,0EED202标量泊松方程标量泊松方程拉普拉斯方程拉普拉斯方程第第

29、 2 章章 电磁场与电磁波电磁场与电磁波电子科技大学电子科技大学编写编写高等教育出版社高等教育出版社 & 高等教育电子音像出版社高等教育电子音像出版社 出版出版Se)(21nDDD由由 和和276. 静电位的边界条件静电位的边界条件 设设P1和和P2是介质分界面两侧紧贴界面的相邻两点,其电位分是介质分界面两侧紧贴界面的相邻两点,其电位分别为别为1和和2。当两点间距离当两点间距离l0时时 导体表面上电位的边界条件:导体表面上电位的边界条件:0dlim21021PPlEl12媒质媒质2媒质媒质121l2P1P 若介质分界面上无自由电荷,即若介质分界面上无自由电荷,即0Snn1122常数,常

30、数,SnSnn112221第第 2 章章 电磁场与电磁波电磁场与电磁波电子科技大学电子科技大学编写编写高等教育出版社高等教育出版社 & 高等教育电子音像出版社高等教育电子音像出版社 出版出版28 例例3.1.4 两块无限大接地导体平板分别置于两块无限大接地导体平板分别置于 x = 0 和和 x = a 处,处,在两板之间的在两板之间的 x = b 处有一面密度为处有一面密度为 的均匀电荷分布,如图所的均匀电荷分布,如图所示。求两导体平板之间的电位和电场。示。求两导体平板之间的电位和电场。0S 解解 在两块无限大接地导体平板之间,除在两块无限大接地导体平板之间,除 x = b 处有均匀面

31、电处有均匀面电荷分布外,其余空间均无电荷分布,故电位函数满足一维拉普拉荷分布外,其余空间均无电荷分布,故电位函数满足一维拉普拉斯方程斯方程212d( )0,(0)dxxbx222d( )0,()dxbxax111222( )( )xC xDxC xD方程的解为方程的解为obaxy两块无限大平行板两块无限大平行板0S1( )x2( ) x第第 2 章章 电磁场与电磁波电磁场与电磁波电子科技大学电子科技大学编写编写高等教育出版社高等教育出版社 & 高等教育电子音像出版社高等教育电子音像出版社 出版出版290110(),0SbaCDa 002200,SSbbCDa 010020()( ),(

32、0)( )(),()SSabxxxbabxaxbxaa 0110()( )( )SxabE xxea 1221122021000SDC aDC bDC bDCC 利用边界条件,有利用边界条件,有xb12( )( ),bb0210( )( )Sx bxxxx 处,处,最后得最后得0 x 处,处,1(0)0 x a2( )0a 处,处,所以所以0220( )( )SxbE xxea由此解得由此解得第第 2 章章 电磁场与电磁波电磁场与电磁波电子科技大学电子科技大学编写编写高等教育出版社高等教育出版社 & 高等教育电子音像出版社高等教育电子音像出版社 出版出版30电容器广泛应用于电子设备的电

33、路中:电容器广泛应用于电子设备的电路中: 在电子电路中,利用电容器来实现滤波、移相、隔直、旁在电子电路中,利用电容器来实现滤波、移相、隔直、旁 路、选频等作用。路、选频等作用。 通过电容、电感、电阻的排布,可组合成各种功能的复杂通过电容、电感、电阻的排布,可组合成各种功能的复杂 电路。电路。 在电力系统中,可利用电容器来改善系统的功率因数,以在电力系统中,可利用电容器来改善系统的功率因数,以 减少电能的损失和提高电气设备的利用率。减少电能的损失和提高电气设备的利用率。 3.1.3 导体系统的电容与部分电容导体系统的电容与部分电容第第 2 章章 电磁场与电磁波电磁场与电磁波电子科技大学电子科技大

34、学编写编写高等教育出版社高等教育出版社 & 高等教育电子音像出版社高等教育电子音像出版社 出版出版31 电容是导体系统的一种基本属性,是描述导体系统电容是导体系统的一种基本属性,是描述导体系统 储存电荷储存电荷能力的物理量。能力的物理量。 孤立导体的电容定义为所带电量孤立导体的电容定义为所带电量q与其电位与其电位 的比值,即的比值,即qC 1. 电容电容 孤立导体的电容孤立导体的电容 两个带等量异号电荷(两个带等量异号电荷( q)的导体组成的电容器,其电容为的导体组成的电容器,其电容为12qqCU 电容的大小只与导体系统的几何尺寸、形状和及周围电介质电容的大小只与导体系统的几何尺寸、形

35、状和及周围电介质 的特性参数有关,而与导体的带电量和电位无关。的特性参数有关,而与导体的带电量和电位无关。第第 2 章章 电磁场与电磁波电磁场与电磁波电子科技大学电子科技大学编写编写高等教育出版社高等教育出版社 & 高等教育电子音像出版社高等教育电子音像出版社 出版出版 (3) 由由 ,求出两导体间的电位差;,求出两导体间的电位差;21dlEU32 (1) 假定两导体上分别带电荷假定两导体上分别带电荷+q 和和q ; (2) 计算两导体间的电场强度计算两导体间的电场强度E; 计算电容的步骤:计算电容的步骤:UqC (4) 求比值求比值 ,即得出所求电容。,即得出所求电容。第第 2 章章

36、 电磁场与电磁波电磁场与电磁波电子科技大学电子科技大学编写编写高等教育出版社高等教育出版社 & 高等教育电子音像出版社高等教育电子音像出版社 出版出版33 解解:设内导体的设内导体的电荷为电荷为q ,则由高斯定理可求得内外导体间,则由高斯定理可求得内外导体间的电场的电场44rr22qqDe,Eerr0011d()44baqqbaUE rabab同心导体间的电压同心导体间的电压04abqCUba球形电容器的电容球形电容器的电容04Ca当当 时,时,b 例例3.1.4 同心球形电容器的内导体半径为同心球形电容器的内导体半径为a 、外导体半径为、外导体半径为b,其间填充介电常数为其间填充介电

37、常数为的均匀介质。的均匀介质。求此球形电容器的电容。求此球形电容器的电容。孤立导体球的电容孤立导体球的电容abo第第 2 章章 电磁场与电磁波电磁场与电磁波电子科技大学电子科技大学编写编写高等教育出版社高等教育出版社 & 高等教育电子音像出版社高等教育电子音像出版社 出版出版34 例例 3.1.5 如图所示的平行双线传输线,导线半径为如图所示的平行双线传输线,导线半径为a ,两导线,两导线的轴线距离为的轴线距离为D ,且,且D a ,求传输线单位长度的电容。,求传输线单位长度的电容。l 解解 设两导线单位长度带电量分别为设两导线单位长度带电量分别为 和和 。由于。由于 ,故可近似地认为

38、电荷分别均匀分布在两故可近似地认为电荷分别均匀分布在两导线的表面上。应用高斯定理和叠加原导线的表面上。应用高斯定理和叠加原理,可得到两导线之间的平面上任一点理,可得到两导线之间的平面上任一点P 的电场强度为的电场强度为lDa011( )()2lxE xexDx两导线间的电位差两导线间的电位差210011d()dln2DallaDaUElxxDxa故单位长度的电容为故单位长度的电容为001(F/m)ln()ln()lCUDaaD axyzxDa第第 2 章章 电磁场与电磁波电磁场与电磁波电子科技大学电子科技大学编写编写高等教育出版社高等教育出版社 & 高等教育电子音像出版社高等教育电子音

39、像出版社 出版出版35 例例3.1.6 同轴线内导体半径为同轴线内导体半径为a ,外导体半径为,外导体半径为b ,内外导体,内外导体间填充的介电常数为间填充的介电常数为 的均匀介质,的均匀介质,求同轴线单位长度的电容。求同轴线单位长度的电容。( )2lEe内外导体间的电位差内外导体间的电位差1( )dd2bblaaUEell 解解 设同轴线的内、外导体单位长度带电量分别为设同轴线的内、外导体单位长度带电量分别为 和和 ,应用高斯定理可得到内外导体间任一点的电场强度为应用高斯定理可得到内外导体间任一点的电场强度为故得同轴线单位长度的电容为故得同轴线单位长度的电容为12(F/m)ln( / )lC

40、Ub aab同轴线同轴线ln( / )2lb a第第 2 章章 电磁场与电磁波电磁场与电磁波电子科技大学电子科技大学编写编写高等教育出版社高等教育出版社 & 高等教育电子音像出版社高等教育电子音像出版社 出版出版36 2. 部份电容部份电容在多导体系统中,任何两个导体间的电压都要受到其余导体在多导体系统中,任何两个导体间的电压都要受到其余导体 上的电荷的影响。因此,研究多导体系统时,必须把电容的上的电荷的影响。因此,研究多导体系统时,必须把电容的 概念加以推广,引入部分电容的概念。概念加以推广,引入部分电容的概念。 在由在由N个导体组成的系统中,由于电位与各导体所带的电荷个导体组成的系

41、统中,由于电位与各导体所带的电荷之间成线性关系,所以,各导体的电位为之间成线性关系,所以,各导体的电位为1(1, 2 ,)Nii jjjqiN式中:式中:(1 , 2 ,)iiiN 自电位系数自电位系数()i jij 互电位系数互电位系数(1) 电位系数电位系数第第 2 章章 电磁场与电磁波电磁场与电磁波电子科技大学电子科技大学编写编写高等教育出版社高等教育出版社 & 高等教育电子音像出版社高等教育电子音像出版社 出版出版37 i j 在数值上等于第在数值上等于第i 个导体上的总电量为一个单位、而其余个导体上的总电量为一个单位、而其余 导体上的总电量都为零时,第导体上的总电量都为零时,

42、第 j 个导体上的电位,即个导体上的电位,即i j 只与各导体的形状、尺寸、相互位置以及导体周围的介质只与各导体的形状、尺寸、相互位置以及导体周围的介质 参数有关,而与各导体的电位和带电量无关;参数有关,而与各导体的电位和带电量无关;具有对称性,即具有对称性,即i j = j i 。1110( ,1 , 2 ,)jjNii jjqqqqi jNqi j 0 ; 电位系数的特点:电位系数的特点:第第 2 章章 电磁场与电磁波电磁场与电磁波电子科技大学电子科技大学编写编写高等教育出版社高等教育出版社 & 高等教育电子音像出版社高等教育电子音像出版社 出版出版38若已知各导体的电位,则各导体

43、的电量可表示为若已知各导体的电位,则各导体的电量可表示为 1(1, 2 ,)Nii jjjqiN 式中:式中:(1 , 2 ,)iiiN 自电容系数或自感应系数自电容系数或自感应系数 ()i jij 互电容系数或互感应系数互电容系数或互感应系数 (2) 电容系数电容系数第第 2 章章 电磁场与电磁波电磁场与电磁波电子科技大学电子科技大学编写编写高等教育出版社高等教育出版社 & 高等教育电子音像出版社高等教育电子音像出版社 出版出版39 i j 在数值上等于第在数值上等于第 j个导体上的个导体上的电位为一个单位、而其余导电位为一个单位、而其余导 体接地时,体接地时,第第 i 个导体上的电

44、量,即个导体上的电量,即 i j 只与各导体的形状、尺寸、相互位置以及导体周围的介质只与各导体的形状、尺寸、相互位置以及导体周围的介质 参数有关,而与各导体的电位和带电量无关;参数有关,而与各导体的电位和带电量无关;具有对称性,即具有对称性,即i j = j i 。1110( ,1 , 2 ,)jjNiijjqi jNi i 0 、 ;0()ijij 电容系数的特点:电容系数的特点:第第 2 章章 电磁场与电磁波电磁场与电磁波电子科技大学电子科技大学编写编写高等教育出版社高等教育出版社 & 高等教育电子音像出版社高等教育电子音像出版社 出版出版40将各导体的电量表示为将各导体的电量表示

45、为 式中:式中:(3) 部分电容部分电容(1, 2 ,)iN()Nijiji iij iCC111()()NNNNii jjijjijiijiijijijijjj ijq 导体导体 i 与导体与导体 j 之间的部分电容之间的部分电容()ijijCij 导体导体 i 与地之间的部分电容与地之间的部分电容 NjjiiiC1第第 2 章章 电磁场与电磁波电磁场与电磁波电子科技大学电子科技大学编写编写高等教育出版社高等教育出版社 & 高等教育电子音像出版社高等教育电子音像出版社 出版出版41 Ci i 在数值上等于全部导体的电位都为一个单位时,在数值上等于全部导体的电位都为一个单位时,第第 i

46、 个导个导 体上的电量;体上的电量; Ci j 只与各导体的形状、尺寸、相互位置以及导体周围的介质只与各导体的形状、尺寸、相互位置以及导体周围的介质 参数有关,而与各导体的电位和带电量无关;参数有关,而与各导体的电位和带电量无关;具有对称性,即具有对称性,即Ci j = Cj i 。Ci j 0 ; Ci j 在数值上等于第在数值上等于第 j 个导体的电位为一个单位、其余个导体的电位为一个单位、其余 导体都接地时,导体都接地时,第第 i 个导体上的电量;个导体上的电量;()ij 部分电容的特点:部分电容的特点:第第 2 章章 电磁场与电磁波电磁场与电磁波电子科技大学电子科技大学编写编写高等教育

47、出版社高等教育出版社 & 高等教育电子音像出版社高等教育电子音像出版社 出版出版42 在多导体系统中,把其中任意两个在多导体系统中,把其中任意两个导体作为电容器的两个电极,设在这导体作为电容器的两个电极,设在这两个电极间加上电压两个电极间加上电压U,极板上所带,极板上所带电荷分别为电荷分别为 ,则比值,则比值 称为这称为这两个导体间的等效电容。两个导体间的等效电容。q/q U(4)等效电容等效电容如图所示,有三个部分电容如图所示,有三个部分电容112212CCC、导线导线 1 和和 2 间的等效电容为间的等效电容为11221121122C CCCCC导线导线 1 和大地间的等效电容为和

48、大地间的等效电容为12222111222C CCCCC导线导线 2 和大地间的等效电容为和大地间的等效电容为12113221211C CCCCC1 12 212C22C11C大地大地大地上空的平行双导线大地上空的平行双导线第第 2 章章 电磁场与电磁波电磁场与电磁波电子科技大学电子科技大学编写编写高等教育出版社高等教育出版社 & 高等教育电子音像出版社高等教育电子音像出版社 出版出版43 如果充电过程进行得足够缓慢,就不会有能量辐射,充电过如果充电过程进行得足够缓慢,就不会有能量辐射,充电过程中外加电源所做的总功将全部转换成电场能量,或者说电场能程中外加电源所做的总功将全部转换成电场能

49、量,或者说电场能量就等于外加电源在此电场建立过程中所做的总功。量就等于外加电源在此电场建立过程中所做的总功。静电场能量来源于建立电荷系统的过程中外源提供的能量。静电场能量来源于建立电荷系统的过程中外源提供的能量。静电场最基本的特征是对电荷有作用力,这表明静电场具有静电场最基本的特征是对电荷有作用力,这表明静电场具有 能量。能量。 任何形式的带电系统,都要经过从没有电荷分布到某个最终任何形式的带电系统,都要经过从没有电荷分布到某个最终电荷分布的建立电荷分布的建立(或充电或充电)过程。在此过程中,外加电源必须克服过程。在此过程中,外加电源必须克服电荷之间的相互作用力而做功。电荷之间的相互作用力而做

50、功。3.1.4 静电场的能量静电场的能量 第第 2 章章 电磁场与电磁波电磁场与电磁波电子科技大学电子科技大学编写编写高等教育出版社高等教育出版社 & 高等教育电子音像出版社高等教育电子音像出版社 出版出版441. 静电场的能量静电场的能量 设系统从零开始充电,最终带电量为设系统从零开始充电,最终带电量为 q 、电位为、电位为 。 充电过程中某一时刻的电荷量为充电过程中某一时刻的电荷量为q 、电位为、电位为 。(01) 当当增加为增加为(+ d)时,外电源做功为时,外电源做功为: (q d)。 对对从从0 到到 1 积分,即得到外电源所做的总功为积分,即得到外电源所做的总功为101d2

51、qq 根据能量守恒定律,此功也就是电量为根据能量守恒定律,此功也就是电量为 q 的带电体具有的电的带电体具有的电场能量场能量We ,即,即 对于电荷体密度为对于电荷体密度为的体分布电荷,体积元的体分布电荷,体积元dV中的电荷中的电荷dV具具有的电场能量为有的电场能量为qW21eVWd21de第第 2 章章 电磁场与电磁波电磁场与电磁波电子科技大学电子科技大学编写编写高等教育出版社高等教育出版社 & 高等教育电子音像出版社高等教育电子音像出版社 出版出版45故体分布电荷的电场能量为故体分布电荷的电场能量为对于面分布电荷,对于面分布电荷,电场能量为电场能量为对于多导体组成的带电系统,则有对

52、于多导体组成的带电系统,则有iq 第第i 个导体所带的电荷个导体所带的电荷i 第第i 个导体的电位个导体的电位式中:式中: iiiiSSiiSiSqSSWiiii21d21d21eVVWd21eSSSWd21e第第 2 章章 电磁场与电磁波电磁场与电磁波电子科技大学电子科技大学编写编写高等教育出版社高等教育出版社 & 高等教育电子音像出版社高等教育电子音像出版社 出版出版462. 电场能量密度电场能量密度 从场的观点来看,静电场的能量分布于电场所在的整个空间。从场的观点来看,静电场的能量分布于电场所在的整个空间。EDw21e电场能量密度:电场能量密度:e1d2VWD E V电场的总能量

53、:电场的总能量:积分区域为电场积分区域为电场所在的整个空间所在的整个空间2e111ddd222VVVWD E VE E VEV 对于线性、各向同性介质,则有对于线性、各向同性介质,则有2e111222wD EE EE 第第 2 章章 电磁场与电磁波电磁场与电磁波电子科技大学电子科技大学编写编写高等教育出版社高等教育出版社 & 高等教育电子音像出版社高等教育电子音像出版社 出版出版1()d2VDDV47由于体积由于体积V外的电荷密度外的电荷密度0,若将上,若将上式中的积分区域扩大到整个场空间,结式中的积分区域扩大到整个场空间,结果仍然成立。只要电荷分布在有限区域果仍然成立。只要电荷分布在

54、有限区域内,当闭合面内,当闭合面S 无限扩大时,则有无限扩大时,则有211 O( O()DRR)、2111d O(.d ) O()0SSDSSR RR故故11dd22SVDSE D V 推证推证:()DDD ()ddVSD VDSE D R0Se11dd22VVWVDV第第 2 章章 电磁场与电磁波电磁场与电磁波电子科技大学电子科技大学编写编写高等教育出版社高等教育出版社 & 高等教育电子音像出版社高等教育电子音像出版社 出版出版48 例例3.1.7 半径为半径为a 的球形空间内均匀分布有电荷体密度为的球形空间内均匀分布有电荷体密度为的电的电荷,试求静电场能量。荷,试求静电场能量。5202420622020220154)d49d49(21arrrarrraa10()3rrEera 解解: 方法一方法一,利用利用 计算计算 VVEDWd21e 根据高斯定理求得电场强度根据高斯定理求得电场强度 3220()3raEerar故故VEVEVEDWVVVd21d21d2121220210e第第 2 章章 电磁场与电磁波电磁场与电磁波电子科技大学电子科技大学编写编写高等教育出版社高等教育出版社 & 高等教育电子音像出版社高等教育电子音像出版

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论