版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、三角形两边的夹角叫做三角形的内角三角形的内角三角形的内角如下图所示是我们常用的三角板,它们的三个角之和为多少度?想一想:任意三角形的三个内角之和也为180度吗?30+60+90=18045+45+90=180思考与探索思考与探索三角形的三个内角和是多少?把三个角拼在一起试试看?你有什么办法可以验证呢?从刚才拼角的过程你能想出证明的办法吗?180实践操作实践操作证明:证明:过点过点A 作直线作直线l ,使使l BC l BC , B = = 1, C = = 2(两直线平行,内错角相等)(两直线平行,内错角相等) BAC + 1 + 2 = 180(平角定义),(平角定义),BAC+ B + C
2、 = 180(等量代换)(等量代换)探索并证明三角形内角和定理探索并证明三角形内角和定理问题:结合下图,你能写出已知、求证和证明吗?问题:结合下图,你能写出已知、求证和证明吗?已知:已知:ABC求证:求证:BAC+ +B + + C = = 180ABC12 l 从刚才拼角的过程你能想出证明的办法吗?把三个角拼在一起,你还有其它拼法吗?ABC21EDCBA三角形的内角和等于1800.延长BC到D, 过C作CEBA, A=1 (两直线平行,内错角相等)B=2(两直线平行,同位角相等)1+2+ACB=180A+B+ACB=180证法二证法二开启 智慧你还有其他方法来证明三你还有其他方法来证明三角形
3、内角和定理吗?角形内角和定理吗?添加辅助线思路:添加辅助线思路:1、构造平角、构造平角2、构造同旁内角、构造同旁内角ABCE图1EABCDF图2ANBCTS图3PQRMANBCTS图4PQRM(ABCEDF(1234(图5)AE)12BCD图6 在这里,为了证明的需要,在原来在这里,为了证明的需要,在原来的图形上添画的线叫做的图形上添画的线叫做辅助线辅助线。在平面。在平面几何里,辅助线通常画成几何里,辅助线通常画成虚线虚线。 为了证明三个角的和为为了证明三个角的和为1800,转转化为一个平角或同旁内角互补化为一个平角或同旁内角互补,这这种种转化思想转化思想是数学中的常用方法是数学中的常用方法.
4、思路总结思路总结(口答)下列各组角是同一个三角形的内角吗?为什么?(2)60, 40, 90(3)30, 60, 50(1)3, 150, 27 (是是 )( 不是不是)( 不是不是)巩固练习巩固练习运用三角形内角和定理运用三角形内角和定理例例1如图,在如图,在ABC 中中, BAC = =40, , B = = 75,AD 是是ABC 的角平分线求的角平分线求ADB 的度数的度数CBDAABC已知ABC中,ABCC=2A ,BD是AC边上的高,求DBC的度数。D解:设Ax0,则ABCC2x0 x2x2x180 (三角形内角和定理)解得x36C2360720DBC1800900720(三角形内
5、角和定理)在BDC中,BDC900(三角形高的定义)DBC180?变式:如图,C岛在A岛的北偏东50方向,B岛在A岛的北偏东80方向,C岛在B岛的北偏西40方向。求下面各题.(1)DAC_ DAB_ EBC_ CAB _ A(2)从C岛看A 、B两岛的视角C是多少?508040DBCE北北解: ADBE DABABE180 ABE 180DAB 180 80 100 在在ABC中中,C 180 CAB ABC 18030 60 90 ABCABECBE30 1004060例例2 2BDCE北A 你能想出一个更简捷的方法来求C的度数吗?125040解:解: 过点过点C画画CFAD 1DAC50
6、, F CFAD, 又又AD BE CF BE2CBE 40 ACB12 50 40 90 解解:在在ACD中中 CAD 30 D 90 DABC ACD =180 -30 -90 =6 0 在在BCD中中 CBD = 45 D 90 BCD = 180 - 90-45 =45 ACB = ACD - BCD = 6 0 - 45 = 15 巩固练习巩固练习1.如图,从A处观测C处时仰角CAD30,从B处观测C处时仰角CBD45.从C处观测A、B两处时视角ACB是多少?解:解: 由题意得由题意得 BACDAC75在在ABC中中 BCA 180 - BAC - B 180 - 75 - 40= 65 ACD = BCD = 65 BCD = ACD + BCD =130 40 40 150ABC2. 如图,一种滑翔伞是左右对称的四边形如图,一种滑翔伞是左右对称的四边形ABCD,其中,其中A=150,BD40。求。求C的度数。的度数。这节课你学了哪些知识,这节课你学了哪些知识,你有那些收获你有那些收获? ?1. 如图ABC中,CD平分ACB,DEBC,A70,ADE50, 求BDC的度数.ABCDE解:A70 ACB=180 -A-B=180-70-50=60DE/BCB=ADE50 CD平分ACB30602121ACBDCBDCBBBDC
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 胆囊癌课件教学课件
- 医疗数据安全事件应急处置流程优化
- 医疗数据安全与医疗数据标准化建设
- 2026届山东省泰安市宁阳县四中生物高三第一学期期末统考试题含解析
- 胃癌医学课件
- 医疗数据备份的区块链数据血缘关系构建
- 医疗数据协同的区块链桥梁
- 肿瘤讲座知识课件
- 肿瘤学课件教学课件
- 医疗数据共享的知识产权保护
- 2025纪检监察应知应会试题库与参考答案
- 2025年高考浙江卷(6月)物理真题(解析版)
- 吹膜机日常维护保养计划表
- 湖南省长沙市一中集团2025-2026学年七年级上学期11月期中联考英语试题(含解析无听力原文及音频)
- 《西方经济学》-宏观经济学下-含教学辅导和习题解答
- 国家安全 青春挺膺-新时代青年的使命与担当
- 2025湖南环境生物职业技术学院单招《语文》通关考试题库完整附答案详解
- 内镜的护理查房
- 2022危险性较大的分部分项工程专项施工方案编制与管理指南
- 小学科学新青岛版(六三制)一年级上册第三单元《玩中学》教案(共4课)(2024秋)
- 国际压力性损伤-溃疡预防和治疗临床指南(2025年版)解读 3
评论
0/150
提交评论