版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、实验四 离散系统分析一、实验目的 深刻理解离散时间系统的系统函数在分析离散系统的时域特性、频域特性以及稳定性中的重要作用及意义,熟练掌握利用MATLAB分析离散系统的时域响应、频响特性和零极点的方法。掌握利用DTFT和DFT确定系统特性的原理和方法。 二、 实验原理 MATLAB提供了许多可用于分析线性时不变连续系统的函数,主要包含有系统函数、系统时域响应、系统频域响应等分析函数。例题:离散系统的单位脉冲响应N=40; a=1,0.4,-0.12;b=1,2; y=impz(b,a,N); stem(y) xlabel('k');title('hk')N=100
2、; b=1,2; a=1,0.4,-0.12; x=ones(1,N); y=filter(b,a,x)y = Columns 1 through 12 1.0000 2.6000 2.0800 2.4800 2.2576 2.3946 2.3131 2.3621 2.3327 2.3504 2.3398 2.3461 Columns 13 through 24 2.3423 2.3446 2.3432 2.3441 2.3436 2.3439 2.3437 2.3438 2.3437 2.3438 2.3437 2.3438 Columns 25 through 36 2.3437 2.34
3、38 2.3437 2.3438 2.3437 2.3438 2.3437 2.3438 2.3437 2.3438 2.3437 2.3438 Columns 37 through 48 2.3437 2.3438 2.3437 2.3438 2.3437 2.3438 2.3437 2.3438 2.3437 2.3438 2.3437 2.3438 Columns 49 through 60 2.3437 2.3438 2.3437 2.3438 2.3437 2.3438 2.3437 2.3438 2.3437 2.3438 2.3437 2.3438 Columns 61 thro
4、ugh 72 2.3437 2.3438 2.3437 2.3438 2.3437 2.3438 2.3437 2.3438 2.3437 2.3438 2.3438 2.3438 Columns 73 through 84 2.3438 2.3438 2.3438 2.3438 2.3438 2.3438 2.3438 2.3438 2.3438 2.3438 2.3438 2.3438 Columns 85 through 96 2.3438 2.3438 2.3438 2.3438 2.3438 2.3438 2.3438 2.3438 2.3438 2.3438 2.3438 2.34
5、38 Columns 97 through 100 2.3438 2.3438 2.3438 2.3438>> N=100; b=1,2; a=1,0.4,-0.12; x=ones(1,N); zi=filtic(b,a,1,2); y=filter(b,a,x,zi)y = Columns 1 through 12 0.8400 2.7840 1.9872 2.5392 2.2228 2.4156 2.3005 2.3697 2.3282 2.3531 2.3381 2.3471 Columns 13 through 24 2.3417 2.3450 2.3430 2.3442
6、 2.3435 2.3439 2.3437 2.3438 2.3437 2.3438 2.3437 2.3438 Columns 25 through 36 2.3437 2.3438 2.3437 2.3438 2.3437 2.3438 2.3437 2.3438 2.3437 2.3438 2.3437 2.3438 Columns 37 through 48 2.3437 2.3438 2.3437 2.3438 2.3437 2.3438 2.3437 2.3438 2.3437 2.3438 2.3437 2.3438 Columns 49 through 60 2.3437 2.
7、3438 2.3437 2.3438 2.3437 2.3438 2.3437 2.3438 2.3437 2.3438 2.3437 2.3438 Columns 61 through 72 2.3437 2.3438 2.3437 2.3438 2.3437 2.3438 2.3437 2.3438 2.3437 2.3438 2.3438 2.3438 Columns 73 through 84 2.3438 2.3438 2.3438 2.3438 2.3438 2.3438 2.3438 2.3438 2.3438 2.3438 2.3438 2.3438 Columns 85 th
8、rough 96 2.3438 2.3438 2.3438 2.3438 2.3438 2.3438 2.3438 2.3438 2.3438 2.3438 2.3438 2.3438 Columns 97 through 100 2.3438 2.3438 2.3438 2.3438>实验内容:>计算该系统函数的零极点,并画出系统函数零极点分布图。b=1,2,0; a=1,0.4,-0.12;z=roots(b)p=roots(a)zplane(b,a)分析系统的幅频特性。b=1,1;a=1,-1,0.5;H,w=freqz(b,a);plot(w,abs(H)xlabel(
9、39;Frequency(rad)');ylabel('Magnitude');title('Magnitude response');三、 实验内容1.已知某LTI系统的差分方程为:(1)初始状态 , 输入 计算系统的完全响应。(2)当以下三个信号分别通过系统时,分别计算离散系统的零状态响应:(3)该系统具有什么特性? N=100; b=0.0675,0.1349,0.0675; a=1,-1.143,0.412; x=ones(1,N); zi=filtic(b,a,1,2);y=filter(b,a,x,zi)y = Columns 1 throu
10、gh 12 0.3865 0.2322 0.3760 0.6041 0.8054 0.9416 1.0143 1.0413 1.0422 1.0322 1.0202 1.0108 Columns 13 through 24 1.0049 1.0020 1.0012 1.0015 1.0021 1.0027 1.0031 1.0033 1.0034 1.0035 1.0034 1.0034 Columns 25 through 36 1.0034 1.0034 1.0033 1.0033 1.0033 1.0033 1.0033 1.0033 1.0033 1.0033 1.0033 1.003
11、3 Columns 37 through 48 1.0033 1.0033 1.0033 1.0033 1.0033 1.0033 1.0033 1.0033 1.0033 1.0033 1.0033 1.0033 Columns 49 through 60 1.0033 1.0033 1.0033 1.0033 1.0033 1.0033 1.0033 1.0033 1.0033 1.0033 1.0033 1.0033 Columns 61 through 72 1.0033 1.0033 1.0033 1.0033 1.0033 1.0033 1.0033 1.0033 1.0033 1
12、.0033 1.0033 1.0033 Columns 73 through 84 1.0033 1.0033 1.0033 1.0033 1.0033 1.0033 1.0033 1.0033 1.0033 1.0033 1.0033 1.0033 Columns 85 through 96 1.0033 1.0033 1.0033 1.0033 1.0033 1.0033 1.0033 1.0033 1.0033 1.0033 1.0033 1.0033 Columns 97 through 100 1.0033 1.0033 1.0033 1.0033 N=40; b=0.0675,0.
13、1349,0.0675; a=1,-1.143,0.412; k=0:N-1 x=cos(pi*k/10);y=filter(b,a,x)y = Columns 1 through 12 0.0675 0.2762 0.5383 0.7145 0.7497 0.6438 0.4271 0.1415 -0.1690 -0.4644 -0.7116 -0.8854 Columns 13 through 24 -0.9692 -0.9560 -0.8482 -0.6569 -0.4014 -0.1068 0.1981 0.4834 0.7213 0.8886 0.9689 0.9544 Column
14、s 25 through 36 0.8464 0.6556 0.4006 0.1065 -0.1981 -0.4833 -0.7212 -0.8885 -0.9688 -0.9543 -0.8464 -0.6556 Columns 37 through 40 -0.4006 -0.1065 0.1981 0.4833 N=40; b=0.0675,0.1349,0.0675; a=1,-1.143,0.412; k=0:N-1 x=cos(pi*k/5);y=filter(b,a,x)stem(y)y = Columns 1 through 12 0.0675 0.2667 0.4745 0.
15、5079 0.3096 -0.0529 -0.4321 -0.6696 -0.6628 -0.4062 0.0062 0.4186 Columns 13 through 24 0.6734 0.6727 0.4160 0.0008 -0.4146 -0.6717 -0.6724 -0.4163 -0.0014 0.4141 0.6714 0.6722 Columns 25 through 36 0.4163 0.0014 -0.4141 -0.6713 -0.6722 -0.4163 -0.0014 0.4141 0.6713 0.6722 0.4163 0.0014 Columns 37 t
16、hrough 40 -0.4141 -0.6713 -0.6722 -0.4163 N=40; b=0.0675,0.1349,0.0675; a=1,-1.143,0.412; k=0:N-1 x=cos(7*pi*k/10);y=filter(b,a,x)stem(y)y = Columns 1 through 12 0.0675 0.1724 0.1366 0.0679 0.0742 0.0119 -0.0170 0.0206 -0.0223 -0.0168 0.0227 -0.0227 Columns 13 through 24 -0.0027 0.0235 -0.0249 0.006
17、8 0.0180 -0.0271 0.0144 0.0105 -0.0266 0.0208 0.0021 -0.0233 Columns 25 through 36 0.0253 -0.0064 -0.0178 0.0273 -0.0143 -0.0104 0.0266 -0.0208 -0.0021 0.0233 -0.0253 0.0064 Columns 37 through 40 0.0178 -0.0273 0.0143 0.0104题二: N=40; b=0.03571,0.1428,0.2143,0.1428,0.03571; a=1,-1.035,0.8264,-0.2605,
18、0.04033; y=impz(b,a,N)stem(y)y = 0.0357 0.1798 0.3708 0.3874 0.1756 -0.0491 -0.1099 -0.0431 0.0264 0.0362 0.0089 -0.0121 -0.0115 -0.0011 0.0049 0.0034 -0.0003 -0.0018 -0.0010 0.0003 0.0006 0.0002 -0.0002 -0.0002 -0.0000 0.0001 0.0001 0.0000 -0.0000 -0.0000 0.0000 0.0000 0.0000 -0.0000 -0.0000 -0.000
19、0 0.0000 0.0000 0.0000 -0.0000 N=40; b=0.03571,0.1428,0.2143,0.1428,0.03571; a=1,-1.035,0.8264,-0.2605,0.04033; k=0:N-1 x=1+cos(pi*k/4)+cos(pi*k/2);y=filter(b,a,x)stem(y)y = Columns 1 through 12 0.1071 0.6002 1.4194 1.8056 1.2763 0.4514 0.1235 0.2914 0.6941 1.3572 2.0325 2.0167 Columns 13 through 24
20、 1.1617 0.2874 0.0788 0.3423 0.7456 1.3634 2.0114 2.0012 1.1625 0.2954 0.0832 0.3411 Columns 25 through 36 0.7428 1.3623 2.0121 2.0021 1.1627 0.2951 0.0829 0.3411 0.7429 1.3624 2.0121 2.0021 Columns 37 through 40 1.1627 0.2951 0.0829 0.3411题三: N=40; k=0:N-1 x=0.5.k; y=0.25*(0.5).k+(0.25).k; X = fft(
21、x,N); Y = fft(y,N); H = Y./X ; h = ifft(H,N) stem(h)h = Columns 1 through 12 1.2500 -0.2500 -0.0625 -0.0156 -0.0039 -0.0010 -0.0002 -0.0001 -0.0000 -0.0000 -0.0000 -0.0000 Columns 13 through 24 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 Columns 25
22、 through 36 -0.0000 -0.0000 -0.0000 -0.0000 0.0000 -0.0000 -0.0000 -0.0000 0.0000 -0.0000 0.0000 -0.0000 Columns 37 through 40 -0.0000 0.0000 0.0000 0.0000 N=40; k=0:N-1 x=0.25.k; y=(0.25).k-(0.25).(k-1); X = fft(x,N); Y = fft(y,N); H = Y./X ; h = ifft(H,N) stem(h)h = Columns 1 through 12 -3.0000 -0
23、.0000 -0.0000 0.0000 -0.0000 0.0000 -0.0000 -0.0000 0.0000 0.0000 0.0000 0.0000 Columns 13 through 24 0.0000 -0.0000 0.0000 -0.0000 -0.0000 -0.0000 -0.0000 0.0000 0 0.0000 -0.0000 -0.0000 Columns 25 through 36 -0.0000 0.0000 -0.0000 -0.0000 0.0000 0.0000 0.0000 -0.0000 0.0000 -0.0000 0.0000 -0.0000
24、Columns 37 through 40 -0.0000 -0.0000 -0.0000 -0.0000题四:x=2,0.8333,0.3611,0.162,0.0748,0.0354,0.017,0.0083,0.0041,0.002,0.001,0.0005,0.0002,0.0001,0.0001;y=0.0056,-0.0259,0.073,-0.1593,0.297,-0.4974,0.7711,-1.1267,1.5702,-2.1037,2.724,-3.4207,4.174,-4.9528,5.7117,-6.3889,6.9034,-7.1528,7.012,-6.3322
25、,4.9416,-2.648,-0.7564,5.4872,-11.7557,19.7533,-29.6298,41.4666,-55.2433,70.7979,-87.7810;subplot(2,1,1);stem(x);subplot(2,1,2);stem(y);x=2,0.8333,0.3611,0.162,0.0748,0.0354,0.017,0.0083,0.0041,0.002,0.001,0.0005,0.0002,0.0001,0.0001;y=0.0056,-0.0259,0.073,-0.1593,0.297,-0.4974,0.7711,-1.1267,1.5702
26、,-2.1037,2.724,-3.4207,4.174,-4.9528,5.7117,-6.3889,6.9034,-7.1528,7.012,-6.3322,4.9416,-2.648,-0.7564,5.4872,-11.7557,19.7533,-29.6298,41.4666,-55.2433,70.7979,-87.7810;X=fft(x,256);Y=fft(y,256);H=Y./X;H0=abs(H);plot(H0);x=2,0.8333,0.3611,0.162,0.0748,0.0354,0.017,0.0083,0.0041,0.002,0.001,0.0005,0
27、.0002,0.0001,0.0001;y=0.0056,-0.0259,0.073,-0.1593,0.297,-0.4974,0.7711,-1.1267,1.5702,-2.1037,2.724,-3.4207,4.174,-4.9528,5.7117,-6.3889,6.9034,-7.1528,7.012,-6.3322,4.9416,-2.648,-0.7564,5.4872,-11.7557,19.7533,-29.6298,41.4666,-55.2433,70.7979,-87.7810;X=fft(x,256);Y=fft(y,256);H=Y./X;h=ifft(H);plot(h);题五:a=1,-3.594,5.17,-3.494,0.945;b=0.6877,-2.509,3.664,-2.509,0.6877;z=roots(b);p=roots(a);subplot(3,1,1);zplane(b,a);H,w=freqz(b,a);title('零极点分布图')subplot(3,1,2);plot(w,abs(H);xlabel('w');ylabel('H0');title('幅频特性');subplot(3,1,3);
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 工地文明生产制度
- 口罩厂生产车间规章制度
- 培训薪酬福利制度
- 票据书写规范制度
- 规范民爆企业管理制度
- 京东企业文化规范制度
- 积分培训制度
- 规范手术管理制度
- 规范集体合同工作制度
- 酒店工作班制度规范
- 船舶设计合同(标准版)
- 产品创新及创意设计评估工作坊方案
- GB/T 42918.3-2025塑料模塑和挤出用热塑性聚氨酯第3部分:用于区分聚醚型聚氨酯和聚酯型聚氨酯的测定方法
- 消防报警设备清单及技术参数
- 家庭防滑改市场拓展,2025年渠道建设报告
- QC/T 262-2025汽车渗碳齿轮金相检验
- T-CFLP 0016-2023《国有企业采购操作规范》【2023修订版】
- 龙湖物业培训课件
- 反诈知识竞赛题库附答案(150 题)
- 2025年注册可靠性工程师资格认证考试题库500题(含真题、重点题)
- 个人购房合同样本大全
评论
0/150
提交评论