




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1设向量,满足,则的取值范围是ABCD2如图,在ABC中,点M是边BC的中点,将ABM沿着AM翻折成ABM,且点B不在平面AMC内,点P是线段BC上一点.若二面角P-AM-B
2、与二面角P-AM-C的平面角相等,则直线AP经过ABC的( )A重心B垂心C内心D外心3已知我市某居民小区户主人数和户主对户型结构的满意率分别如图和如图所示,为了解该小区户主对户型结构的满意程度,用分层抽样的方法抽取的户主进行调查,则样本容量和抽取的户主对四居室满意的人数分别为A240,18B200,20C240,20D200,184若实数满足不等式组,则的最大值为( )ABC3D25过直线上一点作圆的两条切线,为切点,当直线,关于直线对称时,( )ABCD6根据散点图,对两个具有非线性关系的相关变量x,y进行回归分析,设u= lny,v=(x-4)2,利用最小二乘法,得到线性回归方程为=0.
3、5v+2,则变量y的最大值的估计值是( )AeBe2Cln2D2ln27已知,若,则等于( )A3B4C5D68已知函数的部分图象如图所示,将此图象分别作以下变换,那么变换后的图象可以与原图象重合的变换方式有( )绕着轴上一点旋转; 沿轴正方向平移;以轴为轴作轴对称;以轴的某一条垂线为轴作轴对称.ABCD9已知 若在定义域上恒成立,则的取值范围是( )ABCD10已知函数,则( )ABCD11如图,圆锥底面半径为,体积为,、是底面圆的两条互相垂直的直径,是母线的中点,已知过与的平面与圆锥侧面的交线是以为顶点的抛物线的一部分,则该抛物线的焦点到圆锥顶点的距离等于( )AB1CD12已知双曲线的一
4、条渐近线方程是,则双曲线的离心率为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13的展开式中,的系数是_.14已知复数(为虚数单位)为纯虚数,则实数的值为_15齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马.现从双方的马匹中随机选一匹进行一场比赛,则田忌的马获胜的概率为_16给出下列等式:,请从中归纳出第个等式:_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数.(1)若在上单调递增,求实数的取值范围;(2)若,对,恒有成立,求实数的最小值.18
5、(12分)在直角坐标系中,曲线的参数方程为:(其中为参数),直线的参数方程为(其中为参数)(1)以坐标原点为极点,轴的正半轴为极轴建立极坐标系,求曲线的极坐标方程;(2)若曲线与直线交于两点,点的坐标为,求的值.19(12分)2019年入冬时节,长春市民为了迎接2022年北京冬奥会,增强身体素质,积极开展冰上体育锻炼.现从速滑项目中随机选出100名参与者,并由专业的评估机构对他们的锻炼成果进行评估打分(满分为100分)并且认为评分不低于80分的参与者擅长冰上运动,得到如图所示的频率分布直方图:(1)求的值;(2)将选取的100名参与者的性别与是否擅长冰上运动进行统计,请将下列列联表补充完整,并
6、判断能否在犯错误的概率在不超过0.01的前提下认为擅长冰上运动与性别有关系?擅长不擅长合计男性30女性50合计1000.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.828(,其中)20(12分)为调研高中生的作文水平.在某市普通高中的某次联考中,参考的文科生与理科生人数之比为,且成绩分布在的范围内,规定分数在50以上(含50)的作文被评为“优秀作文”,按文理科用分层抽样的方法抽取400人的成绩作为样本,得到成绩的频率分布直方图,如图所示.其中构成以2为公比的等比数列.(1)求的值;(2)填写下面列联表,能否在犯错
7、误的概率不超过0.01的情况下认为“获得优秀作文”与“学生的文理科”有关?文科生理科生合计获奖6不获奖合计400(3)将上述调查所得的频率视为概率,现从全市参考学生中,任意抽取2名学生,记“获得优秀作文”的学生人数为,求的分布列及数学期望.附:,其中.0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.82821(12分)选修4-5:不等式选讲已知函数()解不等式;()对及,不等式恒成立,求实数的取值范围.22(10分)已知动圆过定点,且与直线相切,动圆圆心的轨迹为,过作斜率为的直线与交于两点,过分别作的切线,两切线
8、的交点为,直线与交于两点(1)证明:点始终在直线上且;(2)求四边形的面积的最小值参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1B【解析】由模长公式求解即可.【详解】,当时取等号,所以本题答案为B.【点睛】本题考查向量的数量积,考查模长公式,准确计算是关键,是基础题.2A【解析】根据题意P到两个平面的距离相等,根据等体积法得到SPBM=SPCM,得到答案.【详解】二面角P-AM-B与二面角P-AM-C的平面角相等,故P到两个平面的距离相等.故VP-ABM=VP-ACM,即VA-PBM=VA-PCM,两三棱锥高相等,故SPBM=S
9、PCM,故BP=CP,故P为CB中点.故选:A.【点睛】本题考查了二面角,等体积法,意在考查学生的计算能力和空间想象能力.3A【解析】利用统计图结合分层抽样性质能求出样本容量,利用条形图能求出抽取的户主对四居室满意的人数【详解】样本容量为:(150+250+400)30%240,抽取的户主对四居室满意的人数为:故选A【点睛】本题考查样本容量和抽取的户主对四居室满意的人数的求法,是基础题,解题时要认真审题,注意统计图的性质的合理运用4C【解析】作出可行域,直线目标函数对应的直线,平移该直线可得最优解【详解】作出可行域,如图由射线,线段,射线围成的阴影部分(含边界),作直线,平移直线,当过点时,取
10、得最大值1故选:C【点睛】本题考查简单的线性规划问题,解题关键是作出可行域,本题要注意可行域不是一个封闭图形5C【解析】判断圆心与直线的关系,确定直线,关于直线对称的充要条件是与直线垂直,从而等于到直线的距离,由切线性质求出,得,从而得【详解】如图,设圆的圆心为,半径为,点不在直线上,要满足直线,关于直线对称,则必垂直于直线,设,则,,故选:C【点睛】本题考查直线与圆的位置关系,考查直线的对称性,解题关键是由圆的两条切线关于直线对称,得出与直线垂直,从而得就是圆心到直线的距离,这样在直角三角形中可求得角6B【解析】将u= lny,v=(x-4)2代入线性回归方程=-0.5v+2,利用指数函数和
11、二次函数的性质可得最大估计值.【详解】解:将u= lny,v=(x4)2代入线性回归方程=0.5v+2得:,即,当时,取到最大值2,因为在上单调递增,则取到最大值.故选:B.【点睛】本题考查了非线性相关的二次拟合问题,考查复合型指数函数的最值,是基础题,.7C【解析】先求出,再由,利用向量数量积等于0,从而求得.【详解】由题可知,因为,所以有,得,故选:C.【点睛】该题考查的是有关向量的问题,涉及到的知识点有向量的减法坐标运算公式,向量垂直的坐标表示,属于基础题目.8D【解析】计算得到,故函数是周期函数,轴对称图形,故正确,根据图像知错误,得到答案.【详解】,当沿轴正方向平移个单位时,重合,故
12、正确;,故,函数关于对称,故正确;根据图像知:不正确;故选:.【点睛】本题考查了根据函数图像判断函数性质,意在考查学生对于三角函数知识和图像的综合应用.9C【解析】先解不等式,可得出,求出函数的值域,由题意可知,不等式在定义域上恒成立,可得出关于的不等式,即可解得实数的取值范围.【详解】,先解不等式.当时,由,得,解得,此时;当时,由,得.所以,不等式的解集为.下面来求函数的值域.当时,则,此时;当时,此时.综上所述,函数的值域为,由于在定义域上恒成立,则不等式在定义域上恒成立,所以,解得.因此,实数的取值范围是.故选:C.【点睛】本题考查利用函数不等式恒成立求参数,同时也考查了分段函数基本性
13、质的应用,考查分类讨论思想的应用,属于中等题.10A【解析】根据分段函数解析式,先求得的值,再求得的值.【详解】依题意,.故选:A【点睛】本小题主要考查根据分段函数解析式求函数值,属于基础题.11D【解析】建立平面直角坐标系,求得抛物线的轨迹方程,解直角三角形求得抛物线的焦点到圆锥顶点的距离.【详解】将抛物线放入坐标系,如图所示,设抛物线,代入点,可得焦点为,即焦点为中点,设焦点为,.故选:D【点睛】本小题考查圆锥曲线的概念,抛物线的性质,两点间的距离等基础知识;考查运算求解能力,空间想象能力,推理论证能力,应用意识.12D【解析】双曲线的渐近线方程是,所以,即 , ,即 ,故选D.二、填空题
14、:本题共4小题,每小题5分,共20分。13【解析】先将原式展开成,发现中不含,故只研究后面一项即可得解.【详解】,依题意,只需求中的系数,是.故答案为:-40【点睛】本题考查二项式定理性质,关键是先展开再利用排列组合思想解决,属于基础题.14【解析】利用复数的乘法求解再根据纯虚数的定义求解即可.【详解】解:复数为纯虚数,解得故答案为:【点睛】本题主要考查了根据复数为纯虚数求解参数的问题,属于基础题.15.【解析】分析:由题意结合古典概型计算公式即可求得题中的概率值.详解:由题意可知了,比赛可能的方法有种,其中田忌可获胜的比赛方法有三种:田忌的中等马对齐王的下等马,田忌的上等马对齐王的下等马,田
15、忌的上等马对齐王的中等马,结合古典概型公式可得,田忌的马获胜的概率为.点睛:有关古典概型的概率问题,关键是正确求出基本事件总数和所求事件包含的基本事件数(1)基本事件总数较少时,用列举法把所有基本事件一一列出时,要做到不重复、不遗漏,可借助“树状图”列举(2)注意区分排列与组合,以及计数原理的正确使用.16【解析】通过已知的三个等式,找出规律,归纳出第个等式即可【详解】解:因为:,等式的右边系数是2,且角是等比数列,公比为,则角满足:第个等式中的角,所以;故答案为:【点睛】本题主要考查归纳推理,注意已知表达式的特征是解题的关键,属于中档题三、解答题:共70分。解答应写出文字说明、证明过程或演算
16、步骤。17(1)(2)【解析】(1)求得,根据已知条件得到在恒成立,由此得到在恒成立,利用分离常数法求得的取值范围.(2)构造函数设,利用求二阶导数的方法,结合恒成立,求得的取值范围,由此求得的最小值.【详解】(1)因为在上单调递增,所以在恒成立,即在恒成立,当时,上式成立,当,有,需,而,故综上,实数的取值范围是(2)设,则,令,在单调递增,也就是在单调递增,所以.当即时,不符合;当即时,符合当即时,根据零点存在定理,使,有时,在单调递减,时,在单调递增,成立,故只需即可,有,得,符合综上得,实数的最小值为【点睛】本小题主要考查利用导数研究函数的单调性,考查利用导数研究不等式恒成立问题,考查
17、化归与转化的数学思想方法,考查分类讨论的数学思想方法,属于难题.18(1)(2)5【解析】(1)首先消去参数得到曲线的普通方程,再根据,得到曲线的极坐标方程;(2)将直线的参数方程代入曲线的直角坐标方程,利用直线的参数方程中参数的几何意义得解;【详解】解:(1)曲线:消去参数得到:,由,得所以(2)代入,设,由直线的参数方程参数的几何意义得:【点睛】本题考查参数方程、极坐标方程、普通方程的互化,以及直线参数方程的几何意义的应用,属于中档题19(1)(2)填表见解析;不能在犯错误的概率不超过0.01的前提下认为擅长冰上运动与性别有关系【解析】(1)利用频率分布直方图小长方形的面积和为列方程,解方
18、程求得的值.(2)根据表格数据填写列联表,计算出的值,由此判断不能在犯错误的概率不超过0.01的前提下认为擅长冰上运动与性别有关系.【详解】(1)由题意,解得.(2)由频率分布直方图可得不擅长冰上运动的人数为.完善列联表如下:擅长不擅长合计男性203050女性104050合计3070100,对照表格可知,不能在犯错误的概率不超过0.01的前提下认为擅长冰上运动与性别有关系.【点睛】本小题主要考查根据频率分布直方图计算小长方形的高,考查列联表独立性检验,属于基础题.20(1),.(2)填表见解析;在犯错误的概率不超过0.01的情况下,不能认为“获得优秀作文”与“学生的文理科”有关(3)详见解析【
19、解析】(1)根据频率分步直方图和构成以2为公比的等比数列,即可得解;(2)由频率分步直方图算出相应的频数即可填写列联表,再用的计算公式运算即可;(3)获奖的概率为,随机变量,再根据二项分布即可求出其分布列与期望.【详解】解:(1)由频率分布直方图可知,因为构成以2为公比的等比数列,所以,解得,所以,.故,.(2)获奖的人数为人,因为参考的文科生与理科生人数之比为,所以400人中文科生的数量为,理科生的数量为.由表可知,获奖的文科生有6人,所以获奖的理科生有人,不获奖的文科生有人.于是可以得到列联表如下:文科生理科生合计获奖61420不获奖74306380合计80320400所以在犯错误的概率不超过0.01的情况下,不能认为“获得优秀作文”与“学生的文理科”有关.(3)由(2)可知,获奖的概率为,的可能取值为0,1,2,分布列如下:012数学期望为.【点睛】本题考查频率分布直方图、统计案例和离散型随机变量的分布列与期望,考查学生的阅读理解能力和计算能力,属于中档题21().().【解析】详解:()
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2023-2024学年安徽省池州市贵池区高二下学期期中教学质量检测语文试题(解析版)
- 普洱哈尼族彝族自治县2025年重点中学小升初数学入学考试卷含解析
- 四川省成都市彭州中学2025年高三下学期开学收心考试物理试题含解析
- 山东省烟台市栖霞市2024-2025学年高三冲刺模拟生物试题试卷含解析
- 南方医科大学《马克思主义民族理论与政策》2023-2024学年第二学期期末试卷
- 内蒙古自治区锡林郭勒盟太仆寺旗宝昌镇第一中学2025届高三联测促改化学试题含解析
- 山西省榆社县第二小学度上义务教育2025届数学四年级第二学期期末质量跟踪监视模拟试题含解析
- 武汉铁路桥梁职业学院《车桥耦合振动》2023-2024学年第二学期期末试卷
- 江西传媒职业学院《食品分析基础实验》2023-2024学年第一学期期末试卷
- 民办合肥滨湖职业技术学院《Matlab》2023-2024学年第二学期期末试卷
- (二模)2024~2025学年度苏锡常镇四市高三教学情况调研(二)物理试卷(含答案)
- Mysql 8.0 OCP 1Z0-908 CN-total认证备考题库(含答案)
- GB/T 36572-2018电力监控系统网络安全防护导则
- GB/T 19066.1-2003柔性石墨金属波齿复合垫片分类
- 2021年新高考I卷英语试题分析及备考展望2022课件
- 常见的圆柱截切体名师优质课赛课一等奖市公开课获奖课件
- 《蒋公的面子剧本》
- 护生临床沟通能力测评量表
- 《工厂供电》第六版习习题解答(不全)
- 海水分析化学 考试大纲
- 国内常见模具钢牌号对照表
评论
0/150
提交评论