




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知函数的最小正周期为的图象向左平移个单位长度后关于轴对称,则的单调递增区间为( )ABCD2在满足,的实数对中,使得成立的正整数的最大值为( )A5B6C7D93港珠澳大桥于201
2、8年10月2刻日正式通车,它是中国境内一座连接香港、珠海和澳门的桥隧工程,桥隧全长55千米桥面为双向六车道高速公路,大桥通行限速100km/h,现对大桥某路段上1000辆汽车的行驶速度进行抽样调查画出频率分布直方图(如图),根据直方图估计在此路段上汽车行驶速度在区间85,90)的车辆数和行驶速度超过90km/h的频率分别为()A300,B300,C60,D60,4已知为定义在上的奇函数,且满足当时,则( )ABCD5设集合,若集合中有且仅有2个元素,则实数的取值范围为ABCD6一个频率分布表(样本容量为)不小心被损坏了一部分,只记得样本中数据在上的频率为,则估计样本在、内的数据个数共有( )A
3、BCD7定义域为R的偶函数满足任意,有,且当时,.若函数至少有三个零点,则的取值范围是( )ABCD8设,是双曲线的左,右焦点,是坐标原点,过点作的一条渐近线的垂线,垂足为若,则的离心率为( )ABCD9已知等差数列的前n项和为,则A3B4C5D610已知双曲线的一条渐近线与直线垂直,则双曲线的离心率等于( )ABCD11已知正方体的棱长为2,点为棱的中点,则平面截该正方体的内切球所得截面面积为( )ABCD12方程的实数根叫作函数的“新驻点”,如果函数的“新驻点”为,那么满足( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13若四棱锥的侧面内有一动点Q,已知Q到底面的距离与Q到
4、点P的距离之比为正常数k,且动点Q的轨迹是抛物线,则当二面角平面角的大小为时,k的值为_.14电影厉害了,我的国于2018年3月正式登陆全国院线,网友纷纷表示,看完电影热血沸腾“我为我的国家骄傲,我为我是中国人骄傲!”厉害了,我的国正在召唤我们每一个人,不忘初心,用奋斗书写无悔人生,小明想约甲、乙、丙、丁四位好朋友一同去看厉害了,我的国,并把标识为的四张电影票放在编号分别为1,2,3,4的四个不同的盒子里,让四位好朋友进行猜测:甲说:第1个盒子里放的是,第3个盒子里放的是乙说:第2个盒子里放的是,第3个盒子里放的是丙说:第4个盒子里放的是,第2个盒子里放的是丁说:第4个盒子里放的是,第3个盒子
5、里放的是小明说:“四位朋友你们都只说对了一半”可以预测,第4个盒子里放的电影票为_15已知平行于轴的直线与双曲线:的两条渐近线分别交于,两点,为坐标原点,若为等边三角形,则双曲线的离心率为_.16设集合,则_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数(1)求不等式的解集;(2)若函数的定义域为,求实数 的取值范围18(12分)在中,、分别是角、的对边,且.(1)求角的值;(2)若,且为锐角三角形,求的取值范围.19(12分)在直角坐标系中,曲线的参数方程为(为参数).以为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为(),将曲线向左平移2个单
6、位长度得到曲线.(1)求曲线的普通方程和极坐标方程;(2)设直线与曲线交于两点,求的取值范围.20(12分)在直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为.(1)写出直线的普通方程和曲线的直角坐标方程;(2)设直线与曲线相交于两点,的顶点也在曲线上运动,求面积的最大值.21(12分)如图(1)五边形中,,将沿折到的位置,得到四棱锥,如图(2),点为线段的中点,且平面. (1)求证:平面平面; (2)若直线与所成角的正切值为,求直线与平面所成角的正弦值.22(10分)已知函数(1)若,求函数的单调区间;(2)若恒成立,求实数的取值
7、范围参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1D【解析】先由函数的周期和图象的平移后的函数的图象性质得出函数的解析式,从而得出的解析式,再根据正弦函数的单调递增区间得出函数的单调递增区间,可得选项.【详解】因为函数的最小正周期是,所以,即,所以,的图象向左平移个单位长度后得到的函数解析式为,由于其图象关于轴对称,所以,又,所以,所以,所以, 因为的递增区间是:,由,得:,所以函数的单调递增区间为().故选:D.【点睛】本题主要考查正弦型函数的周期性,对称性,单调性,图象的平移,在进行图象的平移时,注意自变量的系数,属于中档题
8、.2A【解析】由题可知:,且可得,构造函数求导,通过导函数求出的单调性,结合图像得出,即得出,从而得出的最大值.【详解】因为,则,即整理得,令,设,则,令,则,令,则,故在上单调递增,在上单调递减,则,因为,由题可知:时,则,所以,所以,当无限接近时,满足条件,所以,所以要使得故当时,可有,故,即,所以:最大值为5.故选:A.【点睛】本题主要考查利用导数求函数单调性、极值和最值,以及运用构造函数法和放缩法,同时考查转化思想和解题能力.3B【解析】由频率分布直方图求出在此路段上汽车行驶速度在区间的频率即可得到车辆数,同时利用频率分布直方图能求行驶速度超过的频率【详解】由频率分布直方图得:在此路段
9、上汽车行驶速度在区间的频率为,在此路段上汽车行驶速度在区间的车辆数为:,行驶速度超过的频率为:故选:B【点睛】本题考查频数、频率的求法,考查频率分布直方图的性质等基础知识,考查运算求解能力,是基础题4C【解析】由题设条件,可得函数的周期是,再结合函数是奇函数的性质将转化为函数值,即可得到结论.【详解】由题意,则函数的周期是,所以,又函数为上的奇函数,且当时,所以,.故选:C.【点睛】本题考查函数的周期性,由题设得函数的周期是解答本题的关键,属于基础题.5B【解析】由题意知且,结合数轴即可求得的取值范围.【详解】由题意知,则,故,又,则,所以,所以本题答案为B.【点睛】本题主要考查了集合的关系及
10、运算,以及借助数轴解决有关问题,其中确定中的元素是解题的关键,属于基础题.6B【解析】计算出样本在的数据个数,再减去样本在的数据个数即可得出结果.【详解】由题意可知,样本在的数据个数为,样本在的数据个数为,因此,样本在、内的数据个数为.故选:B.【点睛】本题考查利用频数分布表计算频数,要理解频数、样本容量与频率三者之间的关系,考查计算能力,属于基础题.7B【解析】由题意可得的周期为,当时,令,则的图像和的图像至少有个交点,画出图像,数形结合,根据,求得的取值范围.【详解】是定义域为R的偶函数,满足任意,令,又,为周期为的偶函数,当时,当,当,作出图像,如下图所示:函数至少有三个零点,则的图像和
11、的图像至少有个交点,若,的图像和的图像只有1个交点,不合题意,所以,的图像和的图像至少有个交点,则有,即,.故选:B.【点睛】本题考查函数周期性及其应用,解题过程中用到了数形结合方法,这也是高考常考的热点问题,属于中档题.8B【解析】设过点作的垂线,其方程为,联立方程,求得,即,由,列出相应方程,求出离心率.【详解】解:不妨设过点作的垂线,其方程为,由解得,即,由,所以有,化简得,所以离心率故选:B.【点睛】本题主要考查双曲线的概念、直线与直线的位置关系等基础知识,考查运算求解、推理论证能力,属于中档题9C【解析】方法一:设等差数列的公差为,则,解得,所以.故选C方法二:因为,所以,则.故选C
12、10B【解析】由于直线的斜率k,所以一条渐近线的斜率为,即,所以,选B.11A【解析】根据球的特点可知截面是一个圆,根据等体积法计算出球心到平面的距离,由此求解出截面圆的半径,从而截面面积可求.【详解】如图所示:设内切球球心为,到平面的距离为,截面圆的半径为,因为内切球的半径等于正方体棱长的一半,所以球的半径为,又因为,所以,又因为,所以,所以,所以截面圆的半径,所以截面圆的面积为.故选:A.【点睛】本题考查正方体的内切球的特点以及球的截面面积的计算,难度一般.任何一个平面去截球,得到的截面一定是圆面,截面圆的半径可通过球的半径以及球心到截面的距离去计算.12D【解析】由题设中所给的定义,方程
13、的实数根叫做函数的“新驻点”,根据零点存在定理即可求出的大致范围【详解】解:由题意方程的实数根叫做函数的“新驻点”,对于函数,由于,设,该函数在为增函数, ,在上有零点,故函数的“新驻点”为,那么故选:【点睛】本题是一个新定义的题,理解定义,分别建立方程解出存在范围是解题的关键,本题考查了推理判断的能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13【解析】二面角平面角为,点Q到底面的距离为,点Q到定直线得距离为d,则.再由点Q到底面的距离与到点P的距离之比为正常数k,可得,由此可得,则由可求k值.【详解】解:如图,设二面角平面角为,点Q到底面的距离为,点Q到定直线的距离为d
14、,则,即.点Q到底面的距离与到点P的距离之比为正常数k,则,动点Q的轨迹是抛物线,即则.二面角的平面角的余弦值为解得:().故答案为:.【点睛】本题考查了四棱锥的结构特征,由四棱锥的侧面与底面的夹角求参数值,属于中档题.14A或D【解析】分别假设每一个人一半是对的,然后分别进行验证即可【详解】解:假设甲说:第1个盒子里面放的是是对的,则乙说:第3个盒子里面放的是是对的,丙说:第2个盒子里面放的是是对的,丁说:第4个盒子里面放的是是对的,由此可知第4个盒子里面放的是;假设甲说:第3个盒子里面放的是是对的,则丙说:第4个盒子里面放的是是对的,乙说:第2个盒子里面放的是是对的,丁说:第3个盒子里面放
15、的是是对的,由此可知第4个盒子里面放的是故第4个盒子里面放的电影票为或故答案为:或【点睛】本题考查简单的合情推理,考查推理论证能力、分析判断能力、归纳总结能力,属于中档题152【解析】根据为等边三角形建立的关系式,从而可求离心率.【详解】据题设分析知,所以,得,所以双曲线的离心率.【点睛】本题主要考查双曲线的离心率的求解,根据条件建立之间的关系式是求解的关键,侧重考查数学运算的核心素养.16【解析】先解不等式,再求交集的定义求解即可.【详解】由题,因为,解得,即,则,故答案为:【点睛】本题考查集合的交集运算,考查解一元二次不等式.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。1
16、7 (1) (2) 【解析】(1)分类讨论,去掉绝对值,化为与之等价的三个不等式组,求得每个不等式组的解集,再取并集即可(2)要使函数的定义域为R,只要的最小值大于0即可,根据绝对值不等式的性质求得最小值即可得到答案【详解】(1)不等式或或,解得或,即x0,所以原不等式的解集为(2)要使函数的定义域为R,只要的最小值大于0即可,又,当且仅当时取等,只需最小值,即所以实数a的取值范围是【点睛】本题考查绝对值不等式的解法,考查利用绝对值三角不等式求最值,属基础题18 (1) .(2) .【解析】(1)根据题意,由余弦定理求得,即可求解C角的值;(2)由正弦定理和三角恒等变换的公式,化简得到,再根据
17、为锐角三角形,求得,利用三角函数的图象与性质,即可求解.【详解】(1)由题意知,由余弦定理可知,又,.(2)由正弦定理可知,即,又为锐角三角形,即,则,所以,综上的取值范围为.【点睛】本题主要考查了利用正弦定理和三角函数的恒等变换求解三角形问题,对于解三角形问题,通常利用正弦定理进行“边转角”寻求角的关系,利用“角转边”寻求边的关系,利用余弦定理借助三边关系求角,利用两角和差公式及二倍角公式求三角函数值. 利用正、余弦定理解三角形问题是高考高频考点,经常利用三角形内角和定理,三角形面积公式,结合正、余弦定理解题.19(1)的极坐标方程为,普通方程为;(2)【解析】(1)根据三角函数恒等变换可得
18、, ,可得曲线的普通方程,再运用图像的平移得依题意得曲线的普通方程为,利用极坐标与平面直角坐标互化的公式可得方程;(2)法一:将代入曲线的极坐标方程得,运用韦达定理可得,根据,可求得的范围;法二:设直线的参数方程为(为参数,为直线的倾斜角),代入曲线的普通方程得,运用韦达定理可得,根据,可求得的范围;【详解】(1), ,即曲线的普通方程为,依题意得曲线的普通方程为,令,得曲线的极坐标方程为;(2)法一:将代入曲线的极坐标方程得,则,异号,;法二:设直线的参数方程为(为参数,为直线的倾斜角),代入曲线的普通方程得,则,异号,.【点睛】本题考查参数方程与普通方程,极坐标方程与平面直角坐标方程之间的
19、转化,求解几何量的取值范围,关键在于明确极坐标系中极径和极角的几何含义,直线的参数方程,参数的几何意义,属于中档题.20(1):,:;(2)【解析】(1)由直线参数方程消去参数即可得直线的普通方程,根据极坐标方程和直角坐标方程互化的公式即可得曲线的直角坐标方程;(2)由即可得的底,由点到直线的距离的最大值为即可得高的最大值,即可得解.【详解】(1)由消去参数得直线的普通方程为,由得,曲线的直角坐标方程为;(2)曲线即,圆心到直线的距离,所以,又 点到直线的距离的最大值为,所以面积的最大值为.【点睛】本题考查了参数方程、极坐标方程和直角坐标方程的互化,考查了直线与圆的位置关系,属于中档题.21(1)见解析(2)【解析】试题分析: (1)根据已知条件由线线垂直得出线面垂直,再根据面面垂直的判定定理证得成立; (2)通过已知条件求出各边长度,建系如图所示,求出平面的法向量,根据线面角公式代入坐标求得结果.试题解析:(1)证明:取的中点,连接,则,又,所以,则四边形为平行四边形,所以,又平面,平面,.由即及为的中点,可得为等边三角形,又,平面平面,平面平面.(2)解:,为直线与所成的角,由(1)可得,设,则,取的中点,连接,过作
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 硬质合金混合料工工艺考核试卷及答案
- 食醋醋酸菌分离工艺考核试卷及答案
- 琴弦制作工招聘考核试卷及答案
- 印染烧毛工数字化技能考核试卷及答案
- 贝雕工岗位操作技能考核试卷及答案
- 2024新版2025秋人美版美术二年级上册教学课件:第1单元第1课 我画自己 2课时
- 服务心理学(第四版)课件 项目一 任务一 认 识 服 务 行 业
- 银行选拔考试题及答案
- 银行行测考试题库及答案
- 小学语文人教部编版六年级下册《第2课时鲁滨逊漂流记》课件
- 打包机吊装方案
- 如何列好小说提纲
- 【新教材】部编道德与法治六年级上册-全册-表格式教案教学设计
- 文言实词本义引申义
- 第八届全国职工职业技能大赛(网络和信息安全管理员)海南省赛试题库-下(多选、判断题)
- 07J902-3 医疗建筑(卫生间、淋浴间、洗池)
- 2024年电工(高级技师)职业鉴定理论考试题库-下(多选、判断题)
- 2024年网上大学智能云服务交付工程师认证考试题库800题(含答案)
- 公共数据交换技术规范
- 成都麓湖生态城案例详解
- 2024年福建省高职院校单招《语文》考试复习题库(含答案)
评论
0/150
提交评论