




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目
2、要求的。1已知函数的最小正周期为的图象向左平移个单位长度后关于轴对称,则的单调递增区间为( )ABCD2已知中,则( )A1BCD3设,则,三数的大小关系是ABCD4已知双曲线C的两条渐近线的夹角为60,则双曲线C的方程不可能为( )ABCD5已知ab0,c1,则下列各式成立的是()AsinasinbBcacbCacbcD6已知函数,其中,其图象关于直线对称,对满足的,有,将函数的图象向左平移个单位长度得到函数的图象,则函数的单调递减区间是()ABCD7已知变量,满足不等式组,则的最小值为( )ABCD8已知复数z满足iz2+i,则z的共轭复数是()A12iB1+2iC12iD1+2i9根据党
3、中央关于“精准”脱贫的要求,我市某农业经济部门派四位专家对三个县区进行调研,每个县区至少派一位专家,则甲,乙两位专家派遣至同一县区的概率为()ABCD10已知角的终边经过点,则的值是A1或B或C1或D或11已知双曲线,过原点作一条倾斜角为直线分别交双曲线左、右两支P,Q两点,以线段PQ为直径的圆过右焦点F,则双曲线离心率为ABC2D12的展开式中的系数是-10,则实数( )A2B1C-1D-2二、填空题:本题共4小题,每小题5分,共20分。13已知抛物线的焦点为,斜率为2的直线与的交点为,若,则直线的方程为_14的展开式中,若的奇数次幂的项的系数之和为32,则_15在中,已知,是边的垂直平分线
4、上的一点,则_.16如图,在三棱锥ABCD中,点E在BD上,EAEBECED,BDCD,ACD为正三角形,点M,N分别在AE,CD上运动(不含端点),且AMCN,则当四面体CEMN的体积取得最大值时,三棱锥ABCD的外接球的表面积为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知分别是椭圆的左、右焦点,直线与交于两点,且(1)求的方程;(2)已知点是上的任意一点,不经过原点的直线与交于两点,直线的斜率都存在,且,求的值18(12分)如图所示,在四棱锥中,底面为正方形,为的中点,为棱上的一点.(1)证明:面面;(2)当为中点时,求二面角余弦值.19(12分)如
5、图,在四边形中,.(1)求的长;(2)若的面积为6,求的值.20(12分)已知函数(1)解不等式;(2)若均为正实数,且满足,为的最小值,求证:.21(12分)一个工厂在某年里连续10个月每月产品的总成本(万元)与该月产量(万件)之间有如下一组数据:1.081.121.191.281.361.481.591.681.801.872.252.372.402.552.642.752.923.033.143.26(1)通过画散点图,发现可用线性回归模型拟合与的关系,请用相关系数加以说明;(2)建立月总成本与月产量之间的回归方程;通过建立的关于的回归方程,估计某月产量为1.98万件时,产品的总成本为多
6、少万元?(均精确到0.001)附注:参考数据:,.参考公式:相关系数,.22(10分)分别为的内角的对边.已知.(1)若,求;(2)已知,当的面积取得最大值时,求的周长.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1D【解析】先由函数的周期和图象的平移后的函数的图象性质得出函数的解析式,从而得出的解析式,再根据正弦函数的单调递增区间得出函数的单调递增区间,可得选项.【详解】因为函数的最小正周期是,所以,即,所以,的图象向左平移个单位长度后得到的函数解析式为,由于其图象关于轴对称,所以,又,所以,所以,所以, 因为的递增区间是:,
7、由,得:,所以函数的单调递增区间为().故选:D.【点睛】本题主要考查正弦型函数的周期性,对称性,单调性,图象的平移,在进行图象的平移时,注意自变量的系数,属于中档题.2C【解析】以为基底,将用基底表示,根据向量数量积的运算律,即可求解.【详解】,.故选:C.【点睛】本题考查向量的线性运算以及向量的基本定理,考查向量数量积运算,属于中档题.3C【解析】利用对数函数,指数函数以及正弦函数的性质和计算公式,将a,b,c与,比较即可.【详解】由,所以有.选C.【点睛】本题考查对数值,指数值和正弦值大小的比较,是基础题,解题时选择合适的中间值比较是关键,注意合理地进行等价转化.4C【解析】判断出已知条
8、件中双曲线的渐近线方程,求得四个选项中双曲线的渐近线方程,由此确定选项.【详解】两条渐近线的夹角转化为双曲渐近线与轴的夹角时要分为两种情况依题意,双曲渐近线与轴的夹角为30或60,双曲线的渐近线方程为或.A选项渐近线为,B选项渐近线为,C选项渐近线为,D选项渐近线为.所以双曲线的方程不可能为.故选:C【点睛】本小题主要考查双曲线的渐近线方程,属于基础题.5B【解析】根据函数单调性逐项判断即可【详解】对A,由正弦函数的单调性知sina与sinb大小不确定,故错误;对B,因为ycx为增函数,且ab,所以cacb,正确对C,因为yxc为增函数,故 ,错误;对D, 因为在为减函数,故 ,错误故选B【点
9、睛】本题考查了不等式的基本性质以及指数函数的单调性,属基础题6B【解析】根据已知得到函数两个对称轴的距离也即是半周期,由此求得的值,结合其对称轴,求得的值,进而求得解析式.根据图像变换的知识求得的解析式,再利用三角函数求单调区间的方法,求得的单调递减区间.【详解】解:已知函数,其中,其图像关于直线对称,对满足的,有,.再根据其图像关于直线对称,可得,.,.将函数的图像向左平移个单位长度得到函数的图像.令,求得,则函数的单调递减区间是,故选B.【点睛】本小题主要考查三角函数图像与性质求函数解析式,考查三角函数图像变换,考查三角函数单调区间的求法,属于中档题.7B【解析】先根据约束条件画出可行域,
10、再利用几何意义求最值.【详解】解:由变量,满足不等式组,画出相应图形如下:可知点,,在处有最小值,最小值为.故选:B.【点睛】本题主要考查简单的线性规划,运用了数形结合的方法,属于基础题.8D【解析】两边同乘-i,化简即可得出答案【详解】iz2+i两边同乘-i得z=1-2i,共轭复数为1+2i,选D.【点睛】的共轭复数为9A【解析】每个县区至少派一位专家,基本事件总数,甲,乙两位专家派遣至同一县区包含的基本事件个数,由此能求出甲,乙两位专家派遣至同一县区的概率.【详解】派四位专家对三个县区进行调研,每个县区至少派一位专家基本事件总数:甲,乙两位专家派遣至同一县区包含的基本事件个数:甲,乙两位专
11、家派遣至同一县区的概率为:本题正确选项:【点睛】本题考查概率的求法,考查古典概型等基础知识,考查运算求解能力,是基础题.10B【解析】根据三角函数的定义求得后可得结论【详解】由题意得点与原点间的距离当时,当时,综上可得的值是或故选B【点睛】利用三角函数的定义求一个角的三角函数值时需确定三个量:角的终边上任意一个异于原点的点的横坐标x,纵坐标y,该点到原点的距离r,然后再根据三角函数的定义求解即可11B【解析】求得直线的方程,联立直线的方程和双曲线的方程,求得两点坐标的关系,根据列方程,化简后求得离心率.【详解】设,依题意直线的方程为,代入双曲线方程并化简得,故 ,设焦点坐标为,由于以为直径的圆
12、经过点,故,即,即,即,两边除以得,解得.故,故选B.【点睛】本小题主要考查直线和双曲线的交点,考查圆的直径有关的几何性质,考查运算求解能力,属于中档题.12C【解析】利用通项公式找到的系数,令其等于-10即可.【详解】二项式展开式的通项为,令,得,则,所以,解得.故选:C【点睛】本题考查求二项展开式中特定项的系数,考查学生的运算求解能力,是一道容易题.二、填空题:本题共4小题,每小题5分,共20分。13【解析】设直线l的方程为,联立直线l与抛物线C的方程,得到A,B点横坐标的关系式,代入到中,解出t的值,即可求得直线l的方程【详解】设直线由题设得,故,由题设可得由可得,则,从而,得,所以l的
13、方程为,故答案为:【点睛】本题主要考查了直线的方程,抛物线的定义,抛物线的简单几何性质,直线与抛物线的位置关系,属于中档题.14【解析】试题分析:由已知得,故的展开式中x的奇数次幂项分别为,其系数之和为,解得考点:二项式定理15【解析】作出图形,设点为线段的中点,可得出且,进而可计算出的值.【详解】设点为线段的中点,则,.故答案为:.【点睛】本题考查平面向量数量积的计算,涉及平面向量数量积运算律的应用,解答的关键就是选择合适的基底表示向量,考查计算能力,属于中等题.1632【解析】设EDa,根据勾股定理的逆定理可以通过计算可以证明出CEED. AMx,根据三棱锥的体积公式,运用基本不等式,可以
14、求出AM的长度,最后根据球的表面积公式进行求解即可.【详解】设EDa,则CDa.可得CE2+DE2CD2,CEED.当平面ABD平面BCD时,当四面体CEMN的体积才有可能取得最大值,设AMx.则四面体CEMN的体积(ax)axax(ax),当且仅当x时取等号.解得a2.此时三棱锥ABCD的外接球的表面积4a232.故答案为:32【点睛】本题考查了基本不等式的应用,考查了球的表面积公式,考查了数学运算能力和空间想象能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1)(2)【解析】(1)不妨设,计算得到,根据面积得到,计算得到答案.(2)设,联立方程利用韦达定理得到,代
15、入化简计算得到答案.【详解】(1)由题意不妨设,则,又,故的方程为(2)设,则,设直线的方程为,联立整理得在上,上式可化为,【点睛】本题考查了椭圆方程,定值问题,意在考查学生的计算能力和综合应用能力.18(1)证明见解析;(2).【解析】(1)要证明面面,只需证明面即可;(2)以为坐标原点,以,分别为,轴建系,分别计算出面法向量,面的法向量,再利用公式计算即可.【详解】证明:(1)因为底面为正方形,所以又因为,满足,所以又,面,面,所以面.又因为面,所以,面面.(2)由(1)知,两两垂直,以为坐标原点,以,分别为,轴建系如图所示,则,,,则,.所以,设面法向量为,则由得,令得,即;同理,设面的
16、法向量为,则由得,令得,即,所以,设二面角的大小为,则所以二面角余弦值为.【点睛】本题考查面面垂直的证明以及利用向量法求二面角,考查学生的运算求解能力,此类问题关键是准确写出点的坐标,是一道中档题.19 (1) (2) 【解析】(1)利用余弦定理可得的长;(2)利用面积得出,结合正弦定理可得.【详解】解:(1)由题可知.在中,所以.(2),则.又,所以.【点睛】本题主要考查利用正弦定理和余弦定理解三角形,已知角较多时一般选用正弦定理,已知边较多时一般选用余弦定理.20(1)或(2)证明见解析【解析】(1)将写成分段函数的形式,由此求得不等式的解集.(2)由(1)求得最小值,由此利用基本不等式,
17、证得不等式成立.【详解】(1)当时,恒成立,解得;当时,由,解得;当时,由解得所以的解集为或(2)由(1)可求得最小值为,即因为均为正实数,且(当且仅当时,取“”)所以,即.【点睛】本小题主要考查绝对值不等式的求法,考查利用基本不等式证明不等式,属于中档题.21(1)见解析;(2)3.386(万元)【解析】(1)利用代入数值,求出后即可得解;(2)计算出、后,利用求出后即可得解;把代入线性回归方程,计算即可得解.【详解】(1)由已知条件得,说明与正相关,且相关性很强.(2)由已知求得,所以,所求回归直线方程为.当时,(万元),此时产品的总成本约为3.386万元.【点睛】本题考查了相关系数的应用以及线性
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030中国自鞣产品行业市场发展趋势与前景展望战略研究报告
- 2025-2030中国纸制品包装行业市场发展分析及竞争格局与投资发展研究报告
- 2025-2030中国碳钢行业市场发展现状及竞争格局与投资发展前景研究报告
- 2025-2030白色水泥市场投资前景分析及供需格局研究研究报告
- 儿童画分析课件
- 汽车销售个人年度工作总结-销售个人工作总结
- 儿童用药安全管理课件
- 感染危重病人的护理
- 河道开挖监测方案
- 商铺绿化种植方案
- 卡片设计模板核心要素
- 事故隐患内部报告奖励制度培训
- 北京市丰台区2025届小升初考试数学试卷(无答案)
- 第1课+中国古代政治制度的形成与发展(情境化教学课件)+历史统编版选择性必修1
- 轻型卒中临床诊疗中国专家共识解读
- 安全生产知识培训试题及答案
- 2025玉林市陆川县事业单位考试历年真题
- 2025年河北省中考历史试卷(含答案解析)
- 【课件】运动的描述.课件-2024-2025学年人教版物理八年级上册
- 市容管理课件教学
- 大集摆摊招商方案(3篇)
评论
0/150
提交评论