人教版九年级下册数学-28章-锐角三角函数-教学课件_第1页
人教版九年级下册数学-28章-锐角三角函数-教学课件_第2页
人教版九年级下册数学-28章-锐角三角函数-教学课件_第3页
人教版九年级下册数学-28章-锐角三角函数-教学课件_第4页
人教版九年级下册数学-28章-锐角三角函数-教学课件_第5页
已阅读5页,还剩214页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、导入新课讲授新课当堂练习课堂小结28.1 锐角三角函数第二十八章 锐角三角函数第1课时 正弦函数 九年级数学下(RJ) 教学课件学习目标1. 理解并掌握锐角正弦的定义,知道当直角三角形 的锐角固定时,它的对边与斜边的比值都固定 (即正弦值不变). (重点)2. 能根据正弦概念正确进行计算. (重点、难点) 为了绿化荒山,某地打算从位于山脚下的机井房沿着山坡铺设水管,在山坡上建一座扬水站,对坡面绿地进行喷灌. 先测得斜坡的坡脚 (A )为 30,为使出水口的高度为 35 m,需要准备多长的水管?情境引入导入新课30讲授新课已知直角三角形的边长求正弦值一 从上述情境中,你可以找到一个什么数学问题呢

2、?能否结合数学图形把它描述出来?ABC3035m?合作探究ABC3035m 如图,在 RtABC 中,C=90,A=30,BC = 35 m,求AB.根据“在直角三角形中,30角所对的边等于斜边的一半”. 即可得 AB = 2BC =70 (m). 也就是说,需要准备 70 m 长的水管.如果出水口的高度为50 m,那么需要准备多长的水管? 在直角三角形中,如果一个锐角等于30,那么无论这个直角三角形大小如何,这个角的对边与斜边的比都等于 .归纳: RtABC 中,如果C=90,A = 45,那么 BC 与 AB 的比是一个定值吗?因为A=45,则AC=BC,由勾股定理得 AB2=AC2+BC

3、2=2BC2. 思考:所以 因此 在直角三角形中,如果一个锐角等于45,那么无论这个直角三角形大小如何,这个角的对边与斜边的比都等于 .归纳:当A 是任意一个确定的锐角时,它的对边与斜边的比是否也是一个固定值呢? 任意画 RtABC 和 RtABC,使得CC90,AA,那么 与 有什么关系?你能解释一下吗?ABCABC因为CC90,AA,所以RtABC RtABC. 所以 这就是说,在直角三角形中,当锐角 A 的度数一定时,不管三角形的大小如何,A 的对边与斜边的比也是一个固定值 如图,在 RtABC 中,C90,我们把锐角 A 的对边与斜边的比叫做A的正弦,记作 sin A 即例如,当A30

4、时,我们有当A45时,我们有ABCcab对边斜边归纳:A的对边斜边sin A =例1 如图,在 RtABC 中,C=90,求 sinA 和sinB 的值.ABC43图?ABC135图?典例精析解:如图,在 RtABC 中,由勾股定理得因此如图,在RtABC中,由勾股定理得因此sinA = ( ) sinA = ( ) 1. 判断对错A10m6mBC练一练sinB = ( ) sinA =0.6 m ( ) sinB =0.8 m ( ) 2. 在 RtABC中,锐角 A 的对边和斜边同时扩大 100 倍,sinA 的值 ( ) A. 扩大100倍 B. 缩小 C. 不变 D. 不能确定C例2

5、如图,在平面直角坐标系内有一点 P (3,4),连接 OP,求 OP 与 x 轴正方向所夹锐角 的正弦值.解:如图,设点 A (3,0),连接 PA .A (0,3)在RtAPO中,由勾股定理得因此方法总结:结合平面直角坐标系求某角的正弦函数值,一般过已知点向x轴或y轴作垂线,构造直角三角形,再结合勾股定理求解.如图,已知点 P 的坐标是 (a,b),则 sin 等于 ( )OxyP (a,b)A. B.C. D.练一练D已知锐角的正弦值求直角三角形的边长二例3 如图,在 RtABC 中,C=90, ,BC = 3,求 sinB 及 RtABC 的面积.ABC提示:已知 sinA 及A的对边

6、BC 的长度,可以求出斜边 AB 的长. 然后再利用勾股定理,求出 BC 的长度,进而求出 sinB 及 RtABC 的面积.解: AB = 3BC =33=9. 在 RtABC 中,C = 90,sinA = k,sinB = h,AB = c,则BC = ck,AC = ch. 在 RtABC 中,C = 90,sinA = k,sinB = h,BC=a,则AB =AC =归纳:1. 在RtABC中,C=90,sinA= ,BC=6,则 AB 的长为 ( )DA. 4 B. 6 C. 8 D. 102. 在ABC中,C=90,如果 sinA = ,AB=6, 那么BC=_.2练一练例4

7、在 ABC 中,C=90,AC=24cm,sinA= ,求这个三角形的周长解:设BC=7x,则AB=25x,在 RtABC中,由勾 股定理得即 24x = 24cm,解得 x = 1 cm.故 BC = 7x = 7 cm,AB = 25x = 25 cm.所以 ABC 的周长为 AB+BC+AC = 7+24+25 = 56 (cm).方法总结:已知一边及其邻角的正弦函数值时,一般需结合方程思想和勾股定理,解决问题.当堂练习1. 在直角三角形 ABC 中,若三边长都扩大 2 倍,则 锐角 A 的正弦值 ( ) A. 扩大 2 倍 B.不变 C. 缩小 D. 无法确定B2. 如图, sinA的

8、值为 ( )7ACB330A. B. C. D.C3. 在 RtABC 中,C = 90 ,若 sinA = ,则 A= , B= .45454. 如图,在正方形网格中有 ABC,则 sinABC 的值为 .解析: AB ,BC ,AC , AB2 BC2AC2, ACB90,sinABC5. 如图,点 D (0,3),O (0,0),C (4,0)在 A 上, BD是 A 的一条弦,则 sinOBD =_.解析:连接 CD,可得出 OBD= OCD,根据点 D (0,3),C(4,0),得 OD = 3,OC = 4,由勾股定理得出 CD = 5,再在直角三角形中得出利用三角函数求出sinO

9、CD 即可OxyACBD6. 如图,在 ABC 中, AB = BC = 5,sinA = ,求 ABC 的面积.D55CBA解:作BDAC于点D, sinA = ,又 ABC 为等腰,BDAC, AC=2AD=6,SABC=ACBD2=12.7. 如图,在 ABC 中,ACB=90,CDAB. (1) sinB 可以由哪两条线段之比表示?ACBD解: A =A,ADC =ACB = 90, ACD ABC,ACD = B,(2) 若 AC = 5,CD = 3,求 sinB 的值.解: 由题 (1)知课堂小结正弦函数正弦函数的概念正弦函数的应用已知边长求正弦值已知正弦值求边长A的对边斜边si

10、n A =导入新课讲授新课当堂练习课堂小结28.1 锐角三角函数第二十八章 锐角三角函数第2课时 余弦函数和正切函数学习目标1. 认识并理解余弦、正切的概念进而得到锐角三角函 数的概念. (重点)2. 能灵活运用锐角三角函数进行相关运算. (重点、难 点)导入新课问题引入ABC 如图,在 RtABC 中,C90,当锐角 A 确定时,A的对边与斜边的比就随之确定. 此时,其他边之间的比是否也确定了呢?讲授新课余弦一合作探究 如图, ABC 和 DEF 都是直角三角形, 其中A =D,C =F = 90,则成立吗?为什么?ABCDEF我们来试着证明前面的问题:A=D=,C=F=90,B=E,从而

11、sinB = sinE,因此ABCDEF 在有一个锐角相等的所有直角三角形中,这个锐角的邻边与斜边的比值是一个常数,与直角三角形的大小无关 如下图所示,在直角三角形中,我们把锐角A的邻边与斜边的比叫做A的余弦,记作cosA,即归纳:ABC斜边邻边A的邻边斜边cos A =从上述探究和证明过程看出,对于任意锐角,有 cos = sin (90)从而有 sin = cos (90)练一练1. 在 RtABC 中,C90,AB13,AC12, 则cosA .2. 求 cos30,cos60,cos45的值 解:cos30= sin (9030) = sin60 = ; cos60= sin (906

12、0) = sin30= cos45= sin (9045) = sin45=正切二合作探究 如图, ABC 和 DEF 都是直角三角形, 其中A =D,C =F = 90,则成立吗?为什么?ABCDEF RtABC RtDEF.即 BC DF = AC EF ,A=D ,C =F = 90,ABCDEF 由此可得,在有一个锐角相等的所有直角三角形中,这个锐角的对边与邻边的比值是一个常数,与直角三角形的大小无关如下图,在直角三角形中,我们把锐角A的对边与邻边的比叫做 A 的正切,记作 tanA, 即归纳:A的对边A的邻边tan A =ABC邻边对边A的正弦、余弦、正切都是A 的三角函数. 如果两

13、个角互余,那么这两个角的正切值有什么关系?想一想:1. 如图,在平面直角坐标系中,若点 P 坐标为 (3,4), 则 tan POQ=_.练一练2. 如图,ABC 中一边 BC 与以 AC 为直径的 O 相切与点 C,若 BC=4,AB=5,则 tanA=_.锐角三角函数三例1 如图,在 RtABC 中,C=90,AB=10,BC=6,求sinA,cosA,tanA的值.ABC106解:由勾股定理得因此典例精析1. 在RtABC中,C = 90,AC = 12,AB =13. sinA=_,cosA=_,tanA=_, sinB=_,cosB=_,tanB=_.练一练2. 在RtABC中,C9

14、0,AC=2,BC=3. sinA=_,cosA=_,tanA=_, sinB=_,cosB=_,tanB=_.在直角三角形中,如果已知两条边的长度,即可求出所有锐角的正弦、余弦和正切值ABC6例2 如图,在 RtABC中,C = 90,BC = 6, sinA = ,求 cosA、tanB 的值解:又 在直角三角形中,如果已知一 边长及一个锐角的某个三角函 数值,即可求出其它的 所有锐角三角函数值ABC8解: 如图,在 RtABC 中,C = 90,AC = 8,tanA= , 求sinA,cosB 的值练一练1. 如图,在 RtABC 中,斜边 AB 的长为 m, A=35,则直角边 BC

15、 的长是 ( )A.B.C.D.A当堂练习ABC2. 随着锐角 的增大,cos 的值 ( ) A. 增大 B. 减小 C. 不变 D. 不确定B当 090时,cos 的值随着角度的增大 (或减小) 而减小 (或增大)3. 已知 A,B 为锐角, (1) 若A =B,则 cosA cosB; (2) 若 tanA = tanB,则A B. (3) 若 tanA tanB = 1,则 A 与 B 的关系为: .=4. tan30= ,tan60= . A +B = 905. sin70,cos70,tan70的大小关系是 ( ) A. tan70cos70sin70 B. cos70tan70si

16、n70 C. sin70cos70tan70 D. cos70sin70tan70解析:根据锐角三角函数的概念,知 sin701,cos701,tan701. 又cos70sin20,正弦值随着角的增大而增大,sin70cos70sin20. 故选D.D6. 如图,在 RtABC 中,C = 90,cosA = , 求 sinA、tanA 的值解:ABC设 AC = 15k,则 AB = 17k.7. 如图,在 RtABC 中,ACB = 90,CDAB, 垂足为 D. 若 AD = 6,CD = 8. 求 tanB 的值.解: ACB ADC =90,B+ A=90, ACD+ A =90,

17、B = ACD, tanB = tanACD =8. 如图,在ABC中,AB=AC=4,BC=6. 求cosB 及 tanB 的值.解:过点 A 作 ADBC 于 D. AB = AC, BD = CD = 3,在 RtABD 中 tanB =ABCD提示:求锐角的三角函数值的问题,当图形中没有直角三角形时,可以用恰当的方法构造直角三角形.课堂小结余弦函数和正切函数在直角三角形中,锐角 A 的邻边与斜边的比叫做角 A 的余弦A的大小确定的情况下,cosA,tanA为定值,与三角形的大小无关在直角三角形中,锐角 A 的对边与邻边的比叫做角 A 的正切余弦正切性质导入新课讲授新课当堂练习课堂小结2

18、8.1 锐角三角函数第二十八章 锐角三角函数第3课时 特殊角的三角函数值学习目标1. 运用三角函数的知识,自主探索,推导出30、 45、60角的三角函数值. (重点)2. 熟记三个特殊锐角的三角函数值,并能准确地加 以运用. (难点)导入新课复习引入ABCA 的邻边A 的对边斜边A的对边斜边sin A =A的邻边斜边cos A =A的对边A的邻边tan A =1. 对于sin与tan,角度越大,函数值越 ; 对于cos,角度越大,函数值越 .2. 互余的两角之间的三角函数关系: 若A+B=90,则sinA cosB,cosA sinB, tanA tanB = .大小=1讲授新课30、45、6

19、0角的三角函数值一 两块三角尺中有几个不同的锐角?分别求出这几个锐角的正弦值、余弦值和正切值30604545合作探究设30所对的直角边长为a,那么斜边长为2a,另一条直角边长 =30603060设两条直角边长为 a,则斜边长 =4545 30、45、60角的正弦值、余弦值和正切值如下表: 锐角a三角函数 30 45 60sin acos atan a归纳:1例1 求下列各式的值:提示:cos260表示(cos60)2,即(cos60)(cos60).解:cos260+sin260典例精析(1) cos260+sin260;(2) 解:练一练计算:(1) sin30+ cos45;解:原式 =(

20、2) sin230+ cos230tan45.解:原式 =通过三角函数值求角度二解: 在图中,ABC例2 (1) 如图,在RtABC中,C = 90,AB = , BC = ,求 A 的度数; A = 45.解: 在图中,ABO = 60. tan = ,(2) 如图,AO 是圆锥的高,OB 是底面半径,AO = OB,求 的度数.求满足下列条件的锐角 .练一练(1) 2sin = 0; (2) tan1 = 0. 解:(1) sin = , = 60.(2) tan =1, = 45.例3 已知 ABC 中的 A 与 B 满足 (1tanA)2 |sinB |0,试判断 ABC 的形状解:

21、(1tanA)2 | sinB |0, tanA1,sinB A45,B60, C180456075, ABC 是锐角三角形练一练解: | tanB | (2 sinA )2 0, tanB ,sinA B60,A60. 1. 已知:| tanB | (2 sinA )2 0,求A,B的度数.2. 已知 为锐角,且 tan 是方程 x2 + 2x 3 = 0 的一 个根,求 2 sin2 + cos2 tan (+15)的值解:解方程 x2 + 2x 3 = 0,得 x1 = 1,x2 = 3. tan 0, tan =1, = 45. 2 sin2 + cos2 tan (+15) = 2

22、sin245+cos245 tan60当堂练习 1. tan (+20)1,锐角 的度数应是 ( ) A40 B30 C20 D10 DA. cosA = B. cosA =C. tanA = 1 D. tanA =2. 已知 sinA = ,则下列正确的是 ( )B3. 在 ABC 中,若 , 则C = . 120 4. 如图,以 O 为圆心,任意长为半径画弧,与射线 OA 交于点 B,再以 B 为圆心,BO 长为半径画弧, 两弧交于点 C,画射线 OC,则 sinAOC 的值为 _.OABC5. 求下列各式的值: (1) 12 sin30cos30; (2) 3tan30tan45+2si

23、n60; (3) ; (4)答案:(1)(2)(3) 2(4) 6. 若规定 sin (-) = sincos cossin,求 sin15 的值.解:由题意得 sin15= sin (4530) = sin45cos30 cos45sin307. 如图,在ABC中,A=30, , 求 AB的长度.ABCD解:过点 C 作 CDAB 于点 D.A=30, ,ABCD AB = AD + BD = 3 + 2 = 5.课堂小结30、45、60角的三角函数值通过三角函数值求角度特殊角的三角函数值导入新课讲授新课当堂练习课堂小结28.1 锐角三角函数第二十八章 锐角三角函数第4课时 用计算器求锐角三

24、角函数值及锐角学习目标1. 会使用科学计算器求锐角的三角函数值. (重点)2. 会根据锐角的三角函数值,借助科学计算器求锐角 的大小. (重点)3. 熟练运用计算器解决锐角三角函数中的问题. (难点)导入新课 复习引入 锐角a三角函数 30 45 60sin acos atan a1填写下表: 通过前面的学习,我们知道当锐角 A 是 30、45、60等特殊角时,可以求得这些特殊角的锐角三角函数值;如果锐角 A 不是这些特殊角,怎样得到它的锐角三角函数值呢?讲授新课用计算器求锐角的三角函数值或角的度数一例1 (1) 用计算器求sin18的值;解:第一步:按计算器 键;sin第二步:输入角度值18

25、;屏幕显示结果 sin18= 0.309 016 994.不同计算器操作的步骤可能不同哦!典例精析(2) 用计算器求 tan3036 的值;解:方法:第二步:输入角度值30.6 (因为3036 = 30.6);屏幕显示答案:0.591 398 351.第一步:按计算器 键;tan屏幕显示答案:0.591 398 351.方法:第一步:按计算器 键;tan第二步:输入角度值30,分值36 (使用 键); (3) 已知 sinA = 0.501 8,用计算器求 A 的度数.第二步:然后输入函数值0. 501 8;屏幕显示答案: 30.119 158 67(按实际需要进行精确).解:第一步:按计算器

26、 键;2nd Fsin还可以利用 键,进一步得到A = 300708.97 (这说明锐角 A 精确到 1 的结果为 307,精确到 1 的结果为3079). 2nd F 练一练1. 用计算器求下列各式的值(精确到0.0001): (1) sin47;(2) sin1230; (3) cos2518;(4) sin18cos55tan59.答案:(1) 0.7314 (2) 0.2164 (3) 0.9041(4) 0.78172. 已知下列锐角三角函数值,用计算器求锐角 A, B的度数 (结果精确到0.1): (1) sinA0.7,sinB0.01; (2) cosA0.15,cosB0.8

27、; (3) tanA2.4,tanB0.5.答案:(1) A 44.4;B 0.6. (2) A 81.4;B 36.9. (3) A 67.4;B 26.6.利用计算器探索三角函数的性质二例2 通过计算 (可用计算器),比较下列各对数的大小,并提出你的猜想: sin30_2sin15cos15; sin36_2sin18cos18; sin45_2sin22.5cos22.5; sin60_2sin30cos30; sin80_2sin40cos40.猜想:已知045,则sin2_2sincos.=(2) 如图,在ABC中,ABAC1,BAC2, 请利用面积方法验证 (1) 中的结论证明:

28、SABC = AB sin2 AC = sin2, SABC = 2ABsin ACcos = sin cos, sin22sincos. sin20= , cos20= , sin220= , cos220= ; sin35= ,cos35= , sin235= ,cos235= ; 猜想: 已知090,则 sin2 + cos2 = .0.34200.57350.93970.11700.88300.8192 0.32900.6710练一练(1) 利用计算器求值,并提出你的猜想:1(2) 如图,在 RtABC 中,C=90,请验证你在 (1) 中的结论.证明:在 RtABC中,a2 + b2

29、 = c2,bABCac1. 用计算器求sin243718的值,以下按键顺序正确 的是 ( ) A B C D A当堂练习sin24 37 81 =sin24 37 81 =2nd Fsin24 81 =sin24 37 81 =2nd F2. 下列式子中,不成立的是 ( ) Asin35= cos55 Bsin30+ sin45= sin75 C cos30= sin60 Dsin260+ cos260=1B(1) sin40 (精确到0.0001);(2) sin1530 (精确到 0.0001);(3) 若sin = 0.5225,则 (精确到 0.1);(4) 若sin = 0.809

30、0,则 (精确到 0.1).0.64280.267231.53. 利用计算器求值:54.0 4. 已知:sin232+ cos2 =1,则锐角 = .32 5. 用计算器比较大小:20sin87_ tan87. 6. 在 RtABC 中,C = 90,BAC = 4224, A 的平分线 AT = 14.7cm,用计算器求 AC 的长 (精确到0.001).解: AT 平分BAC,且BAC = 4224, CAT = BAC = 2112. 在 RtACT 中 cosCAT = , AC = AT cosCAT = 14.7cos2112 13.705(cm).课堂小结用计算器求锐角三角函数值

31、及锐角用计算器求锐角的三角函数值或角的度数注意:不同的计算器操作步骤可能有所不同利用计算器探索锐三角函数的新知导入新课讲授新课当堂练习课堂小结28.2 解直角三角形及其应用第二十八章 锐角三角函数28.2.1 解直角三角形学习目标1. 了解并掌握解直角三角形的概念;2. 理解直角三角形中的五个元素之间的联系. (重点)3. 学会解直角三角形. (难点)导入新课ACBcba(1) 三边之间的关系:a2+b2=_;(2) 锐角之间的关系: A+B=_;(3) 边角之间的关系:sinA=_,cosA=_, tanA=_. 如图,在RtABC中,共有六个元素(三条边,三个角), 其中C=90.c290

32、复习引入讲授新课已知两边解直角三角形一在图中的RtABC中,(1) 根据A75,斜边AB6,你能求出这个直角三角形的其他元素吗?ABC6合作探究75(2) 根据AC2.4,斜边AB6,你能求出这个直角三角形的其他元素吗?ABC62.4 在直角三角形中,除直角外有5个元素(即3条边、2个锐角),只要知道其中的2个元素(至少有1个是边),就可以求出其余的3个未知元素. 由直角三角形中的已知元素,求出其余未知元素的过程,叫作解直角三角形.ABC解:典例精析例1 如图,在RtABC中,C = 90,AC = , ,解这个直角三角形.在RtABC中,C90,a = 30,b = 20,根据条件解直角三角

33、形. 解:根据勾股定理ABCb=20a=30c练一练已知一边及一锐角解直角三角形二例2 如图,在RtABC中,C90,B35,b=20,解这个直角三角形 (结果保留小数点后一位).ABCb20ca35解:1. 在 RtABC 中,C90,B72,c = 14. 根据条件解直角三角形. ABCbac=14解:练一练2. 如图,已知 AC = 4,求 AB 和 BC 的长提示:作CDAB于点D,根据三角函数的定义,在RtACD,RtCDB中,即可求出 CD,AD,BD 的长,从而求解在RtCDB中,DCB=ACBACD=45,D解:如图,作CDAB于点D,在RtACD中,A=30,ACD=90-A

34、=60,BD=CD=2.已知一锐角三角函数值解直角三角形三例3 如图,在RtABC 中,C=90,cosA = ,BC = 5, 试求AB的长.ACB解:设在解直角三角形中,已知一边与一锐角三角函数值,一般可结合方程思想求解.ACB AB的长为1. 在RtABC中,C=90,sinA = ,BC=6,则 AB的值为 ( ) A4 B6 C8 D10 D2. 如图,在菱形ABCD中,AEBC于点E,EC=4, sinB ,则菱形的周长是 ( ) A10 B20 C40 D28 C练一练图提示:题目中没有给出图形,注意分类讨论.例4 在ABC中,AB= ,AC=13,cosB= ,求BC的长.解:

35、cosB = ,B=45,当ABC为钝角三角形时,如图,AC=13,由勾股定理得CD=5BC=BD-CD=12-5=7;图当ABC为锐角三角形时,如图,BC=BD+CD=12+5=17. BC的长为7或17.当堂练习 C2. 如图,在RtABC中,C=90,B=30, AB=8,则BC的长是 ( ) D1. 在RtABC中,C=90,a,b,c分别是A, B,C的对边,则下列各式正确的是 ( ) A. b=atanA B. b=csinA C. b=ccosA D. a=ccosAACB3. 在RtABC中,C=90,B=37,BC=32,则 AC = (参考数据:sin370.60,cos3

36、70.80, tan370.75).4. 如图,已知RtABC中,斜边BC上的高AD=3,cosB = ,则 AC 的长为 . 243.75 5. 如图,在RtABC中,C90,AC=6, BAC 的平分线 ,解这个直角三角形.解: AD平分BAC,DABC6解:过点 A作 ADBC于D.在ACD中,C=45,AC=2,CD=AD=sinC AC= 2sin45= .在ABD中,B=30,BD=BC=CD+BD= 6. 如图,在ABC中,B=30,C=45,AC=2, 求BC.DABC解直角三角形依据解法:只要知道五个元素中的两个元素(至少有一个是边),就可以求出余下的三个未知元素勾股定理两锐

37、角互余锐角的三角函数课堂小结导入新课讲授新课当堂练习课堂小结28.1 锐角三角函数第二十八章 锐角三角函数第2课时 利用仰俯角解直角三角形学习目标1. 巩固解直角三角形有关知识. (重点)2. 能运用解直角三角形知识解决仰角和俯角有关的实 际问题,在解题过程中进一步体会数形结合、转化、 方程的数学思想,并从这些问题中归纳出常见的基 本模型及解题思路. (重点、难点)导入新课 某探险者某天到达如图所示的点A 处时,他准备估算出离他的目的地,海拔为3 500 m的山峰顶点B处的水平距离.他能想出一个可行的办法吗? 通过这节课的学习,相信你也行.AB问题引入讲授新课解与仰俯角有关的问题一 如图,在进

38、行测量时,从下向上看,视线与水平线上方的夹角叫做仰角;从上往下看,视线与水平线下方的夹角叫做俯角.例1 热气球的探测器显示,从热气球看一栋高楼顶部的仰角为30,看这栋高楼底部的俯 角为60,热气球与高楼的水平距离为120m,这栋高楼有多高(结果精确到0.1m).ABCD仰角水平线俯角分析:我们知道,在视线与水平线所成的角中视线在水平线上方的是仰角,视线在水平线下方的是俯角,因此,在图中,a=30,=60.典例精析 RtABD中,a =30,AD120,所以利用解直角三角形的知识求出BD的长度;类似地可以求出CD的长度,进而求出BC的长度,即求出这栋楼的高度.解:如图,a = 30,= 60,

39、AD120答:这栋楼高约为277.1m.ABCD建筑物BC上有一旗杆AB,由距BC 40m的D处观察旗杆顶部A的仰角为54,观察底部B的仰角为45,求旗杆的高度(精确到0.1m).ABCD40m5445ABCD40m5445解:在等腰RtBCD中,ACD=90,BC=DC=40m.在RtACD中 ,AB=ACBC=55.240=15.2 (m).练一练例3 如图,小明想测量塔AB的高度.他在D处仰望塔顶,测得仰角为30,再往塔的方向前进50m至C处.测得仰角为60,小明的身高1.5 m.那么该塔有多高?(结果精确到1 m),你能帮小明算出该塔有多高吗?DABBDCC解:如图,由题意可知,ADB

40、=30,ACB=60, DC=50m. DAB=60,CAB=30,DC=50m ,设AB=x m.DABBDCC如图,直升飞机在长400米的跨江大桥AB的上方P点处,在大桥的两端测得飞机的仰角分别为37和45 ,求飞机的高度 .(结果取整数. 参考数据:sin370.8,cos37 0.6,tan 370.75)AB3745400米P练一练ABO3745400米P设PO=x米,在RtPOB中,PBO=45,在RtPOA中,PAB=37,OB=PO= x米.解得x=1200.解:作POAB交AB的延长线于O.即故飞机的高度为1200米.当堂练习1. 如图,在高出海平面100米的悬崖顶A处,观测

41、海平 面上一艘小船B,并测得它的俯角为45,则船与观 测者之间的水平距离BC=_米.2. 如图,两建筑物AB和CD的水平距离为30米,从A点 测得 D点的俯角为30,测得C点的俯角为60,则 建筑物CD的高为_米.100图BCA图BCAD30603. 为测量松树AB的高度,一个人站在距松树15米的E 处,测得仰角ACD=52,已知人的高度是1.72米, 则树高 (精确到0.1米). ADBEC20.9 米4. 如图,在电线杆上离地面高度5m的C点处引两根拉 线固定电线杆,一根拉线AC和地面成60角,另一 根拉线BC和地面成45角则两根拉线的总长度为 m(结果用带根号的数的形式表示). 5. 目

42、前世界上最高的电视塔是广州新电视塔如图所示,新电视塔高AB为610米,远处有一栋大楼,某人在楼底C处测得塔顶B的仰角为45,在楼顶D处测得塔顶B的仰角为39(tan390.81)(1) 求大楼与电视塔之间的距离AC;解:由题意,ACAB610(米).(2) 求大楼的高度CD(精确到1米).故BEDEtan39 CDAE,CDABDEtan39610610tan39116(米).解:DEAC610(米),在RtBDE中,tanBDE .4530OBA200米6. 如图,直升飞机在高为200米的大楼AB上方P点处, 从大楼的顶部和底部测得飞机的仰角为30和45, 求飞机的高度PO .UDP答案:飞

43、机的高度为 米.课堂小结利用仰俯角解直角三角形仰角、俯角的概念运用解直角三角形解决仰角、俯角问题模型一模型二模型三模型四仰角、俯角问题的常见基本模型:ADBEC导入新课讲授新课当堂练习课堂小结28.1 锐角三角函数第二十八章 锐角三角函数第3课时 利用方位角、坡度解直角三角形学习目标1. 正确理解方向角、坡度的概念. (重点)2. 能运用解直角三角形知识解决方向角、坡度的问题; 能够掌握综合性较强的题型、融会贯通地运用相关的 数学知识,进一步提高运用解直角三角形知识分析解 决问题的综合能力. (重点、难点)导入新课 以正南或正北方向为准,正南或正北方向线与目标方向线构成的小于90的角,叫做方位

44、角. 如图所示:3045BOA东西北南方位角4545西南O东北东西北南西北东南北偏东30南偏西45复习引入讲授新课解与方位角有关的问题一典例精析例1 如图,一艘海轮位于灯塔P的北偏东65方向,距离灯塔80 n mile的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东34方向上的B处,这时,海轮所在的B处距离灯塔P有多远(精确到0.01 n mile)?6534PBCA解:如图 ,在RtAPC中,PC=PAcos(9065)=80cos25800.91=72.505.在RtBPC中,B=34,因此,当海轮到达位于灯塔P的南偏东34方向时,它距离灯塔P大约130n mile6534PBC

45、A解:过A作AFBC于点F, 则AF的长是A到BC的 最短距离. BDCEAF, DBA=BAF=60, ACE=CAF=30, BAC=BAFCAF=6030=30.例2 如图,海岛A的周围8海里内有暗礁,鱼船跟踪鱼群由西向东航行,在点B处测得海岛A位于北偏东60,航行12海里到达点C处,又测得海岛A位于北偏东30,如果鱼船不改变航向继续向东航行有没有触礁的危险?北东ACB6030DEF又ABC =DBFDBA = 9060=30=BAC,BC=AC=12海里,AF=AC cos30=6 (海里),6 10.3928,故渔船继续向正东方向行驶,没有触礁的危险北东ACB6030DEF 如图所示

46、,A、B两城市相距200km.现计划在这两座城市间修筑一条高速公路(即线段AB),经测量,森林保护中心P在A城市的北偏东30和B城市的北偏西45的方向上已知森林保护区的范围在以P点为圆心,100km为半径的圆形区域内,请问:计划修筑的这条高速公路会不会穿越保护区(参考数据: 1.732, 1.414)练一练200km200km解:过点P作PCAB,C是垂足 则APC30,BPC45, ACPCtan30,BCPCtan45. ACBCAB, PC tan30PC tan45200, 即 PCPC200, 解得 PC126.8km100km. 答:计划修筑的这条高速公 路不会穿越保护区C解与坡度

47、有关的问题二 如图,从山脚到山顶有两条路AB与BC,问哪条路比较陡?如何用数量来刻画哪条路陡呢?ABC观察与思考lhi= h : l1. 坡角坡面与水平面的夹角叫做坡角,记作 .2. 坡度 (或坡比) 坡度通常写成 1m的形式,如i=16. 如图所示,坡面的铅垂高度 (h) 和水 平长度 (l) 的比叫做坡面的坡度 (或坡 比),记作i, 即 i = h : l .坡面水平面3. 坡度与坡角的关系即坡度等于坡角的正切值.lhi= h : l坡面水平面1. 斜坡的坡度是 ,则坡角 =_度.2. 斜坡的坡角是45 ,则坡比是 _.3. 斜坡长是12米,坡高6米,则坡比是_.lh301 : 1练一练

48、例3 如图,一山坡的坡度为i=1:2.小刚从山脚A出发, 沿山坡向上走了240m到达点C.这座山坡的坡角是多少度?小刚上升了多少米(角度精确到0.01,长度精确到0.1m)?i=1:2典例精析在RtABC中,B=90,A=26.57,AC=240m,解:用表示坡角的大小,由题意可得因此 26.57.答:这座山坡的坡角约为26.57,小刚上升了约107.3 m从而 BC=240sin26.57107.3(m)因此例4 水库大坝的横断面是梯形,坝顶宽6m,坝高23m,斜坡AB的坡度i=13,斜坡CD的坡度i=12.5,求:(1) 斜坡CD的坡角 (精确到 1); ADBCi=1:2.5236i=1

49、:3解: 斜坡CD的坡度i = tan = 1 : 2.5=0.4,由计算器可算得22.故斜坡CD的坡角 为22.解:分别过点B、C作BEAD,CFAD,垂足分别为点E、 F,由题意可知BE=CF=23m , EF=BC=6m.在RtABE中,(2) 坝底AD与斜坡AB的长度 (精确到0.1m). EFADBCi=1:2.5236i=1:3=69+6+57.5=132.5 (m).在RtABE中,由勾股定理可得在RtDCF中,同理可得故坝底AD的长度为132.5m,斜坡AB的长度为72.7m.EFADBCi=1:2.5236i=1:3 如图,小明周末上山踏青,他从山脚处的B点出发时,测得坡面A

50、B的坡度为1 : 2,走 米到达山顶A处这时,他发现山的另一坡面AC的最低点C的俯角是30请求出点B和点C的水平距离练一练ACBD30答案:点B和点C的水平距离为 米.当堂练习1. 如图,河坝横断面迎水坡AB的坡比是1 : ,坝高 BC=3m,则坡面AB的长度是 ( )A. 9m B. 6m C. m D. mACBB2. 如图,某渔船如图所示,某渔船在海面上朝正东方 向匀速航行,在A处观测到灯塔M在北偏东60方 向上,航行半小时后到达B处,此时观测到灯塔M 在北偏东30方向上,那么该船继续航行到达离灯 塔距离最近的位置所需的时间是 ( )A. 10分钟 B. 15分钟 C. 20分钟 D.

51、25分钟B3. 如图,C岛在A岛的北偏东50方向,C岛在B岛的 北偏西40方向,则从C岛看A,B两岛的视角 ACB等于 904. 如图,海上B、C两岛分别位于A岛的正东和正北方 向,一艘船从A岛出发,以18海里/时的速度向正北 方向航行2小时到达C岛,此时测得B岛在C岛的南 偏东43方向,则A、B两岛之间的距离为 (结果精确到0.1海里,参考数据:sin43=0.68, cos43=0.73,tan43=0.93) 33.5海里解:作DEAB, CFAB, 垂足分别为E、F 由题意可知 DECF4 (米),CDEF12 (米)5. 一段路基的横断面是梯形,高为4米,上底的宽是 12米,路基的坡

52、面与地面的倾角分别是45和30, 求路基下底的宽 (精确到0.1米, , ). 45304米12米ABCD 在RtADE中,EF 在RtBCF中,同理可得因此 ABAEEFBF4126.9322.93 (米)答: 路基下底的宽约为22.93米(米).(米).45304米12米ABCDEF6. 如图有一个古镇建筑A,它周围800米内有古建筑, 乡村路要由西向东修筑,在B点处测得古建筑A在北 偏东60方向上,向前直行1200米到达D点,这时 测得古建筑A在D点北偏东30方向上,如果不改变 修筑的方向,你认为古建筑会不会遭到破坏?DBAE答案:AE= 米. 800,所以古建筑会遭到破坏.课堂小结解直

53、角三角形的应用坡度问题方位角问题坡角坡度(或坡比) 小结与复习第二十八章 锐角三角函数要点梳理考点讲练课堂小结课后作业(2)A的余弦:cosA;(3)A的正切:tanA.要点梳理1. 锐角三角函数如图所示,在RtABC中,C90,a,b,c分别是A,B,C的对边(1) A的正弦:A的对边斜边sin A =A的邻边斜边A的邻边A的对边sin30,sin45,sin60;cos30,cos45,cos60;tan30,tan45,tan60.2. 特殊角的三角函数1合作探究(1) 在RtABC中,C90,a,b,c分别是A, B,C的对边三边关系:_;三角关系:_ ;边角关系:sinAcosB_

54、,cosAsinB _,tanA_,tanB_.a2b2c2A90B3. 解直角三角形(2) 直角三角形可解的条件和解法 条件:解直角三角形时知道其中的2个元素(至少 有一个是边),就可以求出其余的3个未知元素解法:一边一锐角,先由两锐角互余关系求出 另一锐角;知斜边,再用正弦(或余弦)求另两边; 知直角边用正切求另一直角边,再用正弦或勾股 定理求斜边;知两边:先用勾股定理求另一边, 再用边角关系求锐角;斜三角形问题可通过添 加适当的辅助线转化为解直角三角形问题(3) 互余两角的三角函数间的关系sin = ,cos = _,sin2 + cos2 = .tan tan(90) =_.cos(9

55、0)sin(90)11对于sin与tan,角度越大,函数值越 ;对于cos,角度越大,函数值越_.大小(4) 锐角三角函数的增减性(1) 利用计算器求三角函数值第二步:输入角度值,屏幕显示结果.(不同计算器操作可能不同)第一步:按计算器 键,sintancos4. 借助计算器求锐角三角函数值及锐角(2) 利用计算器求锐角的度数还可以利用 键,进一步得到角的度数.第二步:输入函数值屏幕显示答案 (按实际需要进行精确)方法:2nd F第一步:按计算器 键,2nd Fsincostan方法:第二步:输入锐角函数值屏幕显示答案 (按实际需要选取精确值).第一步:按计算器 键,2nd F(1) 仰角和俯

56、角铅直线水平线视线视线仰角俯角在进行测量时,从下向上看,视线与水平线的夹角叫做仰角;从上往下看,视线与水平线的夹角叫做俯角.5. 三角函数的应用以正南或正北方向为准,正南或正北方向线与目标方向线构成的小于900的角,叫做方位角. 如图所示:3045BOA东西北南(2) 方位角4545西南O东北东西北南西北东南坡面与水平面的夹角叫做坡角,记作,有 i = tan . 坡度通常写成1m的形式,如i=16.显然,坡度越大,坡角就越大,坡面就越陡.如图:坡面的铅垂高度(h)和水平长度(l)的比叫做坡面坡度.记作i,即i = .(3) 坡度,坡角(4) 利用解直角三角形的知识解决实际问题的一般过 程是:

57、 将实际问题抽象为数学问题(画出平面图形, 转化为解直角三角形的问题); 根据条件的特点,适当选用锐角三角函数等 去解直角三角形; 得到数学问题的答案; 得到实际问题的答案ACMN在测点A安置测倾器,测得M的仰角MCE=;E 量出测点A到物体底部N的水平距离AN=l;量出测倾器的高度AC=a,可求出 MN=ME+EN=l tan+a.(1) 测量底部可以到达的物体的高度步骤:6. 利用三角函数测高(2) 测量东方明珠的高度的步骤是怎么样的呢?在测点A处安置测倾器,测得此时M的仰角MCE=;ACBDMNE在测点A与物体之间的B处安置测倾器,测得此时M的仰角 MDE=;量出测倾器的高度AC=BD=

58、a,以及测点A,B之间的距离 AB=b.根据测量数据,可求出物体MN的高度.考点一 求三角函数的值考点讲练例1 在ABC中,C90,sinA ,则tanB的值为 ( )A. B. C. D.解析:根据sinA ,可设三角形的两边长分别为4k,5k,则第三边长为3k,所以tanB B方法总结:求三角函数值方法较多,解法灵活,在具体的解题中要根据已知条件采取灵活的计算方法,常用的方法主要有:(1)根据特殊角的三角函数值求值;(2)直接运用三角函数的定义求值;(3)借助边的数量关系求值;(4)借助等角求值;(5)根据三角函数关系求值;(6)构造直角三角形求值1. 在ABC中, A、 B都是锐角,且s

59、inA=cosB, 那么ABC一定是_三角形直角2. 如图,在网格中,小正方形的边长均为1,点A,B, C都在格点上,则ABC的正切值是_.针对训练例2 矩形ABCD中AB=10,BC=8,E为AD边上一点,沿CE将CDE对折,使点D正好落在AB边上,求tanAFE分析:根据题意,结合折叠的性质,易得AFE=BCF,进而在RtBFC中,有BC=8,CF=10,由勾股定理易得BF的长,根据三角函数的定义,易得 tanBCF的值,借助AFE=BCF,可得tanAFE的值108解:由折叠的性质可得,CF=CD,EFC=EDC=90.AFE+EFC+BFC=180,AFE+BFC=90.BCF+BFC

60、=90,AFE=BCF.在RtBFC中,BC=8,CF=CD=10,由勾股定理易得BF=6.tanBCF = . tanAFE=tanBCF= .108针对训练解:在直角ABD中,tanBAD = BD = ADtanBAD=12 =9,CD=BCBD=149=5,sinC = 如图,ABC中,ADBC,垂足是D,若BC14,AD12,tanBAD ,求sinC的值考点二 特殊角的三角函数值例3 计算:解:原式(1) tan30cos45tan60;(2) tan30 tan60 cos230. 计算:解:原式解:原式针对训练考点三 解直角三角形例4 如图,在ABC中,C90,点D在BC上,B

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论