2022年湖北省武汉市部分重点高考冲刺数学模拟试题含解析_第1页
2022年湖北省武汉市部分重点高考冲刺数学模拟试题含解析_第2页
2022年湖北省武汉市部分重点高考冲刺数学模拟试题含解析_第3页
2022年湖北省武汉市部分重点高考冲刺数学模拟试题含解析_第4页
2022年湖北省武汉市部分重点高考冲刺数学模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡

2、一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1 若数列满足且,则使的的值为( )ABCD2设递增的等比数列的前n项和为,已知,则( )A9B27C81D3已知直线yk(x1)与抛物线C:y24x交于A,B两点,直线y2k(x2)与抛物线D:y28x交于M,N两点,设|AB|2|MN|,则( )A16B16C120D124已知类产品共两件,类产品共三件,混放在一起,现需要通过检测将其区分开来,每次随机检测一件产品,检测后不放回,直到检测出2件类产品或者检测出3件类产品时,检测结束,则第一次检测出类产品,第二次检测出类产品的概率为

3、( )ABCD5已知集合A=y|y=|x|1,xR,B=x|x2,则下列结论正确的是( )A3A B3B CAB=B DAB=B6在边长为1的等边三角形中,点E是中点,点F是中点,则( )ABCD7已知直线过双曲线C:的左焦点F,且与双曲线C在第二象限交于点A,若(O为坐标原点),则双曲线C的离心率为ABCD8已知抛物线的焦点为,准线与轴的交点为,点为抛物线上任意一点的平分线与轴交于,则的最大值为 ABCD9已知函数f(x)ebxexb+c(b,c均为常数)的图象关于点(2,1)对称,则f(5)+f(1)( )A2B1C2D410如图是一个算法流程图,则输出的结果是()ABCD11已知函数,且

4、在上是单调函数,则下列说法正确的是( )ABC函数在上单调递减D函数的图像关于点对称12设为非零向量,则“”是“与共线”的( )A充分而不必要条件B必要而不充分条件C充要条件D既不充分也不必要条件二、填空题:本题共4小题,每小题5分,共20分。13如图,已知一块半径为2的残缺的半圆形材料,O为半圆的圆心,残缺部分位于过点C的竖直线的右侧,现要在这块材料上裁出一个直角三角形,若该直角三角形一条边在上,则裁出三角形面积的最大值为_.14已知函数f(x)=axlnxbx(a,bR)在点(e,f(e)处的切线方程为y=3xe,则a+b=_.15内角,的对边分别为,若,则_16若且时,不等式恒成立,则实

5、数a的取值范围为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数(1)时,求不等式解集;(2)若的解集包含于,求a的取值范围18(12分)已知函数, (1)当x0时,f(x)h(x)恒成立,求a的取值范围;(2)当x0时,研究函数F(x)=h(x)g(x)的零点个数;(3)求证:(参考数据:ln1.10.0953)19(12分)已知分别是椭圆的左焦点和右焦点,椭圆的离心率为是椭圆上两点,点满足.(1)求的方程;(2)若点在圆上,点为坐标原点,求的取值范围.20(12分)已知椭圆的左、右顶点分别为、,上、下顶点分别为,为其右焦点,且该椭圆的离心率为;()求椭

6、圆的标准方程;()过点作斜率为的直线交椭圆于轴上方的点,交直线于点,直线与椭圆的另一个交点为,直线与直线交于点若,求取值范围21(12分)如图,在四棱锥中,底面是直角梯形且,侧面为等边三角形,且平面平面.(1)求平面与平面所成的锐二面角的大小;(2)若,且直线与平面所成角为,求的值.22(10分)在平面直角坐标系xOy中,以O为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C:cos2=4asin(a0),直线l的参数方程为x=-2+22t,y=-1+22t(t为参数).直线l与曲线C交于M,N两点(I)写出曲线C的直角坐标方程和直线l的普通方程(不要求具体过程);(II)设P(-2,-1),

7、若|PM|,|MN|,|PN|成等比数列,求a的值参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1C【解析】因为,所以是等差数列,且公差,则,所以由题设可得,则,应选答案C2A【解析】根据两个已知条件求出数列的公比和首项,即得的值.【详解】设等比数列的公比为q.由,得,解得或.因为.且数列递增,所以.又,解得,故.故选:A【点睛】本题主要考查等比数列的通项和求和公式,意在考查学生对这些知识的理解掌握水平.3D【解析】分别联立直线与抛物线的方程,利用韦达定理,可得,然后计算,可得结果.【详解】设, 联立则,因为直线经过C的焦点, 所

8、以.同理可得,所以故选:D.【点睛】本题考查的是直线与抛物线的交点问题,运用抛物线的焦点弦求参数,属基础题。4D【解析】根据分步计数原理,由古典概型概率公式可得第一次检测出类产品的概率,不放回情况下第二次检测出类产品的概率,即可得解.【详解】类产品共两件,类产品共三件,则第一次检测出类产品的概率为;不放回情况下,剩余4件产品,则第二次检测出类产品的概率为;故第一次检测出类产品,第二次检测出类产品的概率为;故选:D.【点睛】本题考查了分步乘法计数原理的应用,古典概型概率计算公式的应用,属于基础题.5C【解析】试题分析:集合 考点:集合间的关系6C【解析】根据平面向量基本定理,用来表示,然后利用数

9、量积公式,简单计算,可得结果.【详解】由题可知:点E是中点,点F是中点,所以又所以则故选:C【点睛】本题考查平面向量基本定理以及数量积公式,掌握公式,细心观察,属基础题.7B【解析】直线的倾斜角为,易得设双曲线C的右焦点为E,可得中,则,所以双曲线C的离心率为.故选B8A【解析】求出抛物线的焦点坐标,利用抛物线的定义,转化求出比值,求出等式左边式子的范围,将等式右边代入,从而求解【详解】解:由题意可得,焦点F(1,0),准线方程为x1,过点P作PM垂直于准线,M为垂足,由抛物线的定义可得|PF|PM|x1,记KPF的平分线与轴交于根据角平分线定理可得,当时,当时,综上:故选:A【点睛】本题主要

10、考查抛物线的定义、性质的简单应用,直线的斜率公式、利用数形结合进行转化是解决本题的关键考查学生的计算能力,属于中档题9C【解析】根据对称性即可求出答案【详解】解:点(5,f(5)与点(1,f(1)满足(51)22,故它们关于点(2,1)对称,所以f(5)+f(1)2,故选:C【点睛】本题主要考查函数的对称性的应用,属于中档题10A【解析】执行程序框图,逐次计算,根据判断条件终止循环,即可求解,得到答案【详解】由题意,执行上述的程序框图:第1次循环:满足判断条件,;第2次循环:满足判断条件,;第3次循环:满足判断条件,;不满足判断条件,输出计算结果,故选A【点睛】本题主要考查了循环结构的程序框图

11、的结果的计算与输出,其中解答中执行程序框图,逐次计算,根据判断条件终止循环是解答的关键,着重考查了运算与求解能力,属于基础题11B【解析】根据函数,在上是单调函数,确定 ,然后一一验证,A.若,则,由,得,但.B.由,确定,再求解验证.C.利用整体法根据正弦函数的单调性判断.D.计算是否为0.【详解】因为函数,在上是单调函数,所以 ,即,所以 ,若,则,又因为,即,解得, 而,故A错误.由,不妨令 ,得由,得 或当时,不合题意.当时,此时所以,故B正确.因为,函数,在上是单调递增,故C错误.,故D错误.故选:B【点睛】本题主要考查三角函数的性质及其应用,还考查了运算求解的能力,属于较难的题.1

12、2A【解析】根据向量共线的性质依次判断充分性和必要性得到答案.【详解】若,则与共线,且方向相同,充分性;当与共线,方向相反时,故不必要.故选:.【点睛】本题考查了向量共线,充分不必要条件,意在考查学生的推断能力.二、填空题:本题共4小题,每小题5分,共20分。13【解析】分两种情况讨论:(1)斜边在BC上,设,则,(2)若在若一条直角边在上,设,则,进一步利用导数的应用和三角函数关系式恒等变形和函数单调性即可求出最大值.【详解】(1)斜边在上,设,则,则,从而.当时,此时,符合.(2)若一条直角边在上,设,则,则,由知.,当时,单调递增,当时,单调递减,.当,即时,最大.故答案为:.【点睛】此

13、题考查实际问题中导数,三角函数和函数单调性的综合应用,注意分类讨论把所有情况考虑完全,属于一般性题目.140【解析】由题意,列方程组可求,即求.【详解】在点处的切线方程为,代入得.又.联立解得:.故答案为:0.【点睛】本题考查导数的几何意义,属于基础题.15【解析】,即,16【解析】将不等式两边同时平方进行变形,然后得到对应不等式组,对的取值进行分类,将问题转化为二次函数在区间上恒正、恒负时求参数范围,列出对应不等式组,即可求解出的取值范围.【详解】因为,所以,所以,所以,所以或,当时,对且不成立,当时,取,显然不满足,所以,所以,解得;当时,取,显然不满足,所以,所以,解得,综上可得的取值范

14、围是:.故答案为:.【点睛】本题考查根据不等式恒成立求解参数范围,难度较难.根据不等式恒成立求解参数范围的两种常用方法:(1)分类讨论法:分析参数的临界值,对参数分类讨论;(2)参变分离法:将参数单独分离出来,再以函数的最值与参数的大小关系求解出参数范围.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1)(2)【解析】(1) 代入可得对分类讨论即可得不等式的解集; (2)根据不等式在上恒成立去绝对值化简可得再去绝对值即可得关于 的不等式组解不等式组即可求得的取值范围【详解】(1)当时,不等式可化为,当时,不等式为,解得;当时,不等式为,无解;当时,不等式为,解得,综上,原

15、不等式的解集为(2)因为的解集包含于,则不等式可化为,即解得,由题意知,解得,所以实数a的取值范围是【点睛】本题考查了绝对值不等式的解法分类讨论解绝对值不等式的应用,含参数不等式的解法.难度一般.18(1);(2)见解析;(3)见解析【解析】(1)令H(x)=h(x)f(x)=ex1aln(x+1)(x0),求得导数,讨论a1和a1,判断导数的符号,由恒成立思想可得a的范围;(2)求得F(x)=h(x)g(x)的导数和二阶导数,判断F(x)的单调性,讨论a1,a1,F(x)的单调性和零点个数;(3)由(1)知,当a=1时,ex1+ln(x+1)对x0恒成立,令;由(2)知,当a=1时,对x0恒

16、成立,令,结合条件,即可得证【详解】()解:令H(x)=h(x)f(x)=ex1aln(x+1)(x0),则,若a1,则,H(x)0,H(x)在0,+)递增,H(x)H(0)=0,即f(x)h(x)在0,+)恒成立,满足,所以a1; 若a1,H(x)=ex在0,+)递增,H(x)H(0)=1a,且1a0,且x+时,H(x)+,则x0(0,+),使H(x0)=0进而H(x)在0,x0)递减,在(x0,+)递增,所以当x(0,x0)时H(x)H(0)=0,即当x(0,x0)时,f(x)h(x),不满足题意,舍去;综合,知a的取值范围为(,1()解:依题意得,则F(x)=exx2+a,则F(x)=e

17、x2x0在(,0)上恒成立,故F(x)=exx2+a在(,0)递增,所以F(x)F(0)=1+a,且x时,F(x);若1+a0,即a1,则F(x)F(0)=1+a0,故F(x)在(,0)递减,所以F(x)F(0)=0,F(x)在(,0)无零点; 若1+a0,即a1,则使,进而F(x)在递减,在递增,且x时,F(x)在上有一个零点,在无零点,故F(x)在(,0)有一个零点综合,当a1时无零点;当a1时有一个零点()证明:由()知,当a=1时,ex1+ln(x+1)对x0恒成立,令,则即; 由()知,当a=1时,对x0恒成立,令,则,所以;故有【点睛】本题考查导数的运用:求单调区间,考查函数零点存

18、在定理的运用,考查分类讨论思想方法,以及运算能力和推理能力,属于难题对于函数的零点问题,它和方程的根的问题,和两个函数的交点问题是同一个问题,可以互相转化;在转化为两个函数交点时,如果是一个常函数一个含自变量的函数,注意让含有自变量的函数式子尽量简单一些19(1);(2).【解析】(1)根据焦点坐标和离心率,结合椭圆中的关系,即可求得的值,进而得椭圆的标准方程.(2)设出直线的方程为,由题意可知为中点.联立直线与椭圆方程,由韦达定理表示出,由判别式可得;由平面向量的线性运算及数量积定义,化简可得,代入弦长公式化简;由中点坐标公式可得点的坐标,代入圆的方程,化简可得,代入数量积公式并化简,由换元

19、法令,代入可得,再令及,结合函数单调性即可确定的取值范围,即确定的取值范围,因而可得的取值范围.【详解】(1)分别是椭圆的左焦点和右焦点,则,椭圆的离心率为则解得,所以,所以的方程为.(2)设直线的方程为,点满足,则为中点,点在圆上,设,联立直线与椭圆方程,化简可得,所以 则,化简可得,而 由弦长公式代入可得为中点,则 点在圆上,代入化简可得,所以令,则,令,则令,则,所以, 因为在内单调递增,所以,即所以【点睛】本题考查了椭圆的标准方程求法,直线与椭圆的位置关系综合应用,由韦达定理研究参数间的关系,平面向量的线性运算与数量积运算,弦长公式的应用及换元法在求取值范围问题中的综合应用,计算量大,

20、属于难题.20();(),【解析】()由题意可得,的坐标,结合椭圆离心率,及隐含条件列式求得,的值,则椭圆方程可求;()设直线,求得的坐标,再设直线,求出点的坐标,写出的方程,联立与,可求出的坐标,由,可得关于的函数式,由单调性可得取值范围【详解】(),由,得,又,解得:,椭圆的标准方程为;()设直线,则与直线的交点,又,设直线,联立,消可得解得,联立,得,直线,联立,解得,函数在上单调递增,【点睛】本题考查椭圆方程的求法,考查直线与椭圆位置关系的应用,考查运算求解能力,意在考查学生对这些知识的理解掌握水平和分析推理计算能力21(1);(2).【解析】(1)分别取的中点为,易得两两垂直,以所在直线为轴建立空间直角坐标系,易得为平面的法向量,只需求出平面的法向量为,再利用计算即可;(2)求出,利用计算即可.【详解】(1)分别取的中点为,连结.因为,所以.因为,所以.因为侧面为等边三角形,所以又因为平面平面,平面平面,平面,所以平面,所以两两垂直. 以为空间坐标系的原

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论