




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知全集,集合,则阴影部分表示的集合是( )ABCD2已知锐角满足则( )ABCD3设分别是双曲线的左右焦点若双曲线上存在点,使,且,则双曲线的离心率为( )AB2CD4设等差数列的前项和为,若,则( )A23B25C28D295如图是
2、正方体截去一个四棱锥后的得到的几何体的三视图,则该几何体的体积是( )ABCD6已知复数,为的共轭复数,则( )ABCD7若函数的定义域为Mx|2x2,值域为Ny|0y2,则函数的图像可能是( )ABCD8双曲线的右焦点为,过点且与轴垂直的直线交两渐近线于两点,与双曲线的其中一个交点为,若,且,则该双曲线的离心率为( )ABCD9如图,在平行四边形中,为对角线的交点,点为平行四边形外一点,且,则( )ABCD10过圆外一点引圆的两条切线,则经过两切点的直线方程是( )ABCD11已知当,时,则以下判断正确的是 ABCD与的大小关系不确定12的二项展开式中,的系数是( )A70B-70C28D-
3、28二、填空题:本题共4小题,每小题5分,共20分。13函数f(x)x2xlnx的图象在x1处的切线方程为_.14,则f(f(2)的值为_15如图,从一个边长为的正三角形纸片的三个角上,沿图中虚线剪出三个全等的四边形,余下部分再以虚线为折痕折起,恰好围成一个缺少上底的正三棱柱,而剪出的三个相同的四边形恰好拼成这个正三棱柱的上底,则所得正三棱柱的体积为_.16在平面直角坐标系中,点在曲线:上,且在第四象限内已知曲线在点处的切线为,则实数的值为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知直线:与抛物线切于点,直线:过定点Q,且抛物线上的点到点Q的距离与其到准线
4、距离之和的最小值为.(1)求抛物线的方程及点的坐标;(2)设直线与抛物线交于(异于点P)两个不同的点A、B,直线PA,PB的斜率分别为,那么是否存在实数,使得?若存在,求出的值;若不存在,请说明理由.18(12分)已知数列中,(实数为常数),是其前项和,且数列是等比数列,恰为与的等比中项(1)证明:数列是等差数列; (2)求数列的通项公式;(3)若,当时,的前项和为,求证:对任意,都有19(12分)某市计划在一片空地上建一个集购物、餐饮、娱乐为一体的大型综合园区,如图,已知两个购物广场的占地都呈正方形,它们的面积分别为13公顷和8公顷;美食城和欢乐大世界的占地也都呈正方形,分别记它们的面积为公
5、顷和公顷;由购物广场、美食城和欢乐大世界围成的两块公共绿地都呈三角形,分别记它们的面积为公顷和公顷.(1)设,用关于的函数表示,并求在区间上的最大值的近似值(精确到0.001公顷);(2)如果,并且,试分别求出、的值.20(12分)已知向量,函数(1)求函数的最小正周期及单调递增区间;(2)在中,三内角的对边分别为,已知函数的图像经过点,成等差数列,且,求a的值21(12分)如图,在中,点在线段上.(1)若,求的长;(2)若,求的面积.22(10分)已知,求的最小值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1D【解析】先求出
6、集合N的补集,再求出集合M与的交集,即为所求阴影部分表示的集合.【详解】由,可得或,又所以.故选:D.【点睛】本题考查了韦恩图表示集合,集合的交集和补集的运算,属于基础题.2C【解析】利用代入计算即可.【详解】由已知,因为锐角,所以,即.故选:C.【点睛】本题考查二倍角的正弦、余弦公式的应用,考查学生的运算能力,是一道基础题.3A【解析】由及双曲线定义得和(用表示),然后由余弦定理得出的齐次等式后可得离心率【详解】由题意,由双曲线定义得,从而得,在中,由余弦定理得,化简得故选:A【点睛】本题考查求双曲线的离心率,解题关键是应用双曲线定义用表示出到两焦点的距离,再由余弦定理得出的齐次式4D【解析
7、】由可求,再求公差,再求解即可.【详解】解:是等差数列,又,公差为,故选:D【点睛】考查等差数列的有关性质、运算求解能力和推理论证能力,是基础题.5C【解析】根据三视图作出几何体的直观图,结合三视图的数据可求得几何体的体积.【详解】根据三视图还原几何体的直观图如下图所示:由图可知,该几何体是在棱长为的正方体中截去四棱锥所形成的几何体,该几何体的体积为.故选:C.【点睛】本题考查利用三视图计算几何体的体积,考查空间想象能力与计算能力,属于基础题.6C【解析】求出,直接由复数的代数形式的乘除运算化简复数.【详解】.故选:C【点睛】本题考查复数的代数形式的四则运算,共轭复数,属于基础题.7B【解析】
8、因为对A不符合定义域当中的每一个元素都有象,即可排除;对B满足函数定义,故符合;对C出现了定义域当中的一个元素对应值域当中的两个元素的情况,不符合函数的定义,从而可以否定;对D因为值域当中有的元素没有原象,故可否定故选B8D【解析】根据已知得本题首先求出直线与双曲线渐近线的交点,再利用,求出点,因为点在双曲线上,及,代入整理及得,又已知,即可求出离心率【详解】由题意可知,代入得:,代入双曲线方程整理得:,又因为,即可得到,故选:D【点睛】本题主要考查的是双曲线的简单几何性质和向量的坐标运算,离心率问题关键寻求关于,的方程或不等式,由此计算双曲线的离心率或范围,属于中档题9D【解析】连接,根据题
9、目,证明出四边形为平行四边形,然后,利用向量的线性运算即可求出答案【详解】连接,由,知,四边形为平行四边形,可得四边形为平行四边形,所以.【点睛】本题考查向量的线性运算问题,属于基础题10A【解析】过圆外一点,引圆的两条切线,则经过两切点的直线方程为,故选11C【解析】由函数的增减性及导数的应用得:设,求得可得为增函数,又,时,根据条件得,即可得结果【详解】解:设,则,即为增函数,又,即,所以,所以故选:C【点睛】本题考查了函数的增减性及导数的应用,属中档题12A【解析】试题分析:由题意得,二项展开式的通项为,令,所以的系数是,故选A考点:二项式定理的应用二、填空题:本题共4小题,每小题5分,
10、共20分。13xy0.【解析】先将x1代入函数式求出切点纵坐标,然后对函数求导数,进一步求出切线斜率,最后利用点斜式写出切线方程.【详解】由题意得.故切线方程为y1x1,即xy0.故答案为:xy0.【点睛】本题考查利用导数求切线方程的基本方法,利用切点满足的条件列方程(组)是关键.同时也考查了学生的运算能力,属于基础题.141【解析】先求f(1),再根据f(1)值所在区间求f(f(1).【详解】由题意,f(1)=log3(111)=1,故f(f(1)=f(1)=1e11=1,故答案为:1【点睛】本题考查分段函数求值,考查对应性以及基本求解能力.151【解析】由题意得正三棱柱底面边长6,高为,由
11、此能求出所得正三棱柱的体积【详解】如图,作,交于,由题意得正三棱柱底面边长,高为,所得正三棱柱的体积为:故答案为:1【点睛】本题考查立体几何中的翻折问题、正三棱柱体积的求法、三棱柱的结构特征等基础知识,考查空间想象能力、运算求解能力,求解时注意翻折前后的不变量16【解析】先设切点,然后对求导,根据切线方程的斜率求出切点的横坐标,代入原函数求出切点的纵坐标,即可得出切得,最后将切点代入切线方程即可求出实数的值.【详解】解:依题意设切点,因为,则,又因为曲线在点处的切线为,解得,又因为点在第四象限内,则,.则又因为点在切线上.所以.所以.故答案为: 【点睛】本题考查了导数的几何意义,以及导数的运算
12、法则和已知切线斜率求出切点坐标,本题属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1),(1,2);(2)存在,【解析】(1)由直线恒过点点及抛物线C上的点到点Q的距离与到准线的距离之和的最小值为,求出抛物线的方程,再由直线与抛物线相切,即可求得切点的坐标;(2)直线与抛物线方程联立,利用根与系数的关系,求得直线PA,PB的斜率,求出斜率之和为定值,即存在实数使得斜率之和为定值.【详解】(1)由题意,直线变为2x+1-m(2y+1)=0,所以定点Q的坐标为 抛物线的焦点坐标,由抛物线C上的点到点Q的距离与到其焦点F的距离之和的最小值为,可得,解得或(舍去),故
13、抛物线C的方程为又由消去y得,因为直线与抛物线C相切,所以,解得,此时,所以点P坐标为(1,2)(2)设存在满足条件的实数,点,联立,消去x得,则,依题意,可得,解得m-1或,由(1)知P(1,2),可得,同理可得,所以=,故存在实数=满足条件.【点睛】本题主要考查抛物线方程的求解、及直线与圆锥曲线的位置关系的综合应用,解答此类题目,通常联立直线方程与抛物线方程,应用一元二次方程根与系数的关系进行求解,此类问题易错点是复杂式子的变形能力不足,导致错解,能较好的考查考生的逻辑思维能力、运算求解能力、分析问题解决问题的能力等.18(1)见解析(2)(3)见解析【解析】(1)令可得,即得到,再利用通
14、项公式和前n项和的关系求解, (2)由(1)知,设等比数列的公比为,所以,再根据恰为与的等比中项求解,(3)由(2)得到时,求得,再代入证明。【详解】(1)解:令可得,即所以时,可得,当时,所以显然当时,满足上式所以,所以数列是等差数列, (2)由(1)知,设等比数列的公比为,所以,恰为与的等比中项,所以,解得,所以(3)时,而时,所以当时,.当时,对任意,都有,【点睛】本题主要考查数列的通项公式和前n项和的关系,等差数列,等比数列的定义和性质以及数列放缩的方法,还考查了转化化归的思想和运算求解的能力,属于难题,19(1),最大值公顷;(2)17、25、5、5.【解析】(1)由余弦定理求出三角
15、形ABC的边长BC,进而可以求出,由面积公式求出 ,即可求出,并求出最值;(2)由(1)知,即可求出、,再算出,代入(1)中表达式求出,。【详解】(1)由余弦定理得,所以,同理可得又 ,所以,故在区间上的最大值为,近似值为。(2)由(1)知, ,所以,进而,由知, 故、的值分别是17、25、5、5。【点睛】本题主要考查利用余弦定理解三角形以及同角三角函数平方关系的应用,意在考查学生的数学建模以及数学运算能力。20(1),(2)【解析】(1)利用向量的数量积和二倍角公式化简得,故可求其周期与单调性;(2)根据图像过得到,故可求得的大小,再根据数量积得到的乘积,最后结合余弦定理和构建关于的方程即可【详解】(1),最小正周期:,由得,所以的单调递增区间为;(2)由可得:,所以又因为成等差数列,所以而,21(1)(2)【解析】(1)先根据平方关系求出,再根据正弦定理即可求出;(2)分别在和中,根据正弦定理列出两个等式,两式相除,利用题目条件即可求出,再根据余弦定理求出,即可根据求出的面积【详解】(1)由,得,所以.由正弦定理得,即,得.(2)由正弦定理,在中
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025第九届全国中小学“学宪法、讲宪法”活动知识题库及答案
- 软件水平考试模拟训练试题及答案
- 2025年可持续发展视角下的公司战略与风险管理试题及答案
- 2025年软考设计师实际应用试题及答案解析
- 未来数字转型战略试题及答案
- APPS开发与分发策略试题及答案
- 网络管理员考点试题及答案分析
- 信息处理技术员考后总结与试题及答案
- 河北省保定市安国市2025届七年级数学第二学期期末综合测试模拟试题含解析
- 大数据技术在商业中的应用试题及答案
- 国际压力性损伤-溃疡预防和治疗临床指南(2025年版)解读课件
- PAN纤维结晶度取向度和形貌的演变规律对其性能影响
- 岛津GCMS-TQ8040教材
- (完整版)化工原理各章节知识点总结
- 空调水管线试压冲洗方案
- 总公司与分公司承包协议[页]
- 食品经营设施空间布局图
- 预制箱梁运输及安装质量保证体系及措施
- GB∕T 36266-2018 淋浴房玻璃(高清版)
- 内科学-原发性支气管肺癌
- 航空煤油 MSDS 安全技术说明书
评论
0/150
提交评论