版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1根据如图所示的程序框图,当输入的值为3时,输出的值等于( )A1BCD2甲、乙、丙、丁四位同学利用暑假游玩某风景名胜大峡谷,四人各自去景区的百里绝壁、千丈瀑布、原始森林、远古村寨四大景点中的一个,每个景点去一人已知:甲不在远古村寨,也不
2、在百里绝壁;乙不在原始森林,也不在远古村寨;“丙在远古村寨”是“甲在原始森林”的充分条件;丁不在百里绝壁,也不在远古村寨若以上语句都正确,则游玩千丈瀑布景点的同学是( )A甲B乙C丙D丁3在满足,的实数对中,使得成立的正整数的最大值为( )A5B6C7D94在中,D为的中点,E为上靠近点B的三等分点,且,相交于点P,则( )ABCD5已知某几何体的三视图如图所示,则该几何体外接球的表面积为( )ABCD6复数的( )A第一象限B第二象限C第三象限D第四象限7已知,则 ()ABCD8设,则,三数的大小关系是ABCD9甲、乙、丙三人参加某公司的面试,最终只有一人能够被该公司录用,得到面试结果以后甲
3、说:丙被录用了;乙说:甲被录用了;丙说:我没被录用.若这三人中仅有一人说法错误,则下列结论正确的是( )A丙被录用了B乙被录用了C甲被录用了D无法确定谁被录用了10要得到函数的图象,只需将函数的图象( )A向右平移个单位B向右平移个单位C向左平移个单位D向左平移个单位11若为虚数单位,则复数的共轭复数在复平面内对应的点位于( )A第一象限B第二象限C第三象限D第四象限12某歌手大赛进行电视直播,比赛现场有名特约嘉宾给每位参赛选手评分,场内外的观众可以通过网络平台给每位参赛选手评分.某选手参加比赛后,现场嘉宾的评分情况如下表,场内外共有数万名观众参与了评分,组织方将观众评分按照,分组,绘成频率分
4、布直方图如下:嘉宾评分嘉宾评分的平均数为,场内外的观众评分的平均数为,所有嘉宾与场内外的观众评分的平均数为,则下列选项正确的是( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13在中,内角A,B,C的对边分别是a,b,c,且,则_.14已知(为虚数单位),则复数_15如图,在平面四边形中,点,是椭圆短轴的两个端点,点在椭圆上,记和的面积分别为,则_.16已知集合,则_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知椭圆经过点,离心率为.(1)求椭圆的方程;(2)过点的直线交椭圆于、两点,若,在线段上取点,使,求证:点在定直线上.18(12分)三棱柱
5、中,平面平面,点为棱的中点,点为线段上的动点.(1)求证:;(2)若直线与平面所成角为,求二面角的正切值.19(12分)如图,三棱柱的侧棱垂直于底面,且,是棱的中点.(1)证明:;(2)求二面角的余弦值.20(12分)已知点,直线与抛物线交于不同两点、,直线、与抛物线的另一交点分别为两点、,连接,点关于直线的对称点为点,连接、(1)证明:;(2)若的面积,求的取值范围21(12分)已知是各项都为正数的数列,其前项和为,且为与的等差中项(1)求证:数列为等差数列;(2)设,求的前100项和22(10分)已知函数与的图象关于直线对称. (为自然对数的底数)(1)若的图象在点处的切线经过点,求的值;
6、(2)若不等式恒成立,求正整数的最小值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1C【解析】根据程序图,当x0继续运行,x=1-2=-10,程序运行结束,得,故选C【点睛】本题考查程序框图,是基础题2D【解析】根据演绎推理进行判断【详解】由可知甲乙丁都不在远古村寨,必有丙同学去了远古村寨,由可知必有甲去了原始森林,由可知丁去了千丈瀑布,因此游玩千丈瀑布景点的同学是丁故选:D【点睛】本题考查演绎推理,掌握演绎推理的定义是解题基础3A【解析】由题可知:,且可得,构造函数求导,通过导函数求出的单调性,结合图像得出,即得出,从而得出
7、的最大值.【详解】因为,则,即整理得,令,设,则,令,则,令,则,故在上单调递增,在上单调递减,则,因为,由题可知:时,则,所以,所以,当无限接近时,满足条件,所以,所以要使得故当时,可有,故,即,所以:最大值为5.故选:A.【点睛】本题主要考查利用导数求函数单调性、极值和最值,以及运用构造函数法和放缩法,同时考查转化思想和解题能力.4B【解析】设,则,由B,P,D三点共线,C,P,E三点共线,可知,,解得即可得出结果.【详解】设,则,因为B,P,D三点共线,C,P,E三点共线,所以,所以,.故选:B.【点睛】本题考查了平面向量基本定理和向量共线定理的简单应用,属于基础题.5C【解析】由三视图
8、可知,几何体是一个三棱柱,三棱柱的底面是底边为,高为的等腰三角形,侧棱长为,利用正弦定理求出底面三角形外接圆的半径,根据三棱柱的两底面中心连线的中点就是三棱柱的外接球的球心,求出球的半径,即可求解球的表面积.【详解】由三视图可知,几何体是一个三棱柱,三棱柱的底面是底边为,高为的等腰三角形,侧棱长为,如图:由底面边长可知,底面三角形的顶角为,由正弦定理可得,解得, 三棱柱的两底面中心连线的中点就是三棱柱的外接球的球心,所以,该几何体外接球的表面积为:.故选:C【点睛】本题考查了多面体的内切球与外接球问题,由三视图求几何体的表面积,考查了学生的空间想象能力,属于基础题.6C【解析】所对应的点为(-
9、1,-2)位于第三象限.【考点定位】本题只考查了复平面的概念,属于简单题.7B【解析】利用诱导公式以及同角三角函数基本关系式化简求解即可【详解】,本题正确选项:【点睛】本题考查诱导公式的应用,同角三角函数基本关系式的应用,考查计算能力8C【解析】利用对数函数,指数函数以及正弦函数的性质和计算公式,将a,b,c与,比较即可.【详解】由,所以有.选C.【点睛】本题考查对数值,指数值和正弦值大小的比较,是基础题,解题时选择合适的中间值比较是关键,注意合理地进行等价转化.9C【解析】假设若甲被录用了,若乙被录用了,若丙被录用了,再逐一判断即可.【详解】解:若甲被录用了,则甲的说法错误,乙,丙的说法正确
10、,满足题意,若乙被录用了,则甲、乙的说法错误,丙的说法正确,不符合题意,若丙被录用了,则乙、丙的说法错误,甲的说法正确,不符合题意,综上可得甲被录用了,故选:C.【点睛】本题考查了逻辑推理能力,属基础题.10D【解析】直接根据三角函数的图象平移规则得出正确的结论即可;【详解】解:函数,要得到函数的图象,只需将函数的图象向左平移个单位故选:D【点睛】本题考查三角函数图象平移的应用问题,属于基础题11B【解析】由共轭复数的定义得到,通过三角函数值的正负,以及复数的几何意义即得解【详解】由题意得,因为,所以在复平面内对应的点位于第二象限故选:B【点睛】本题考查了共轭复数的概念及复数的几何意义,考查了
11、学生概念理解,数形结合,数学运算的能力,属于基础题.12C【解析】计算出、,进而可得出结论.【详解】由表格中的数据可知,由频率分布直方图可知,则,由于场外有数万名观众,所以,.故选:B.【点睛】本题考查平均数的大小比较,涉及平均数公式以及频率分布直方图中平均数的计算,考查计算能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。139【解析】已知由余弦定理即可求得,由可求得,即可求得,利用正弦定理即可求得结果.【详解】由余弦定理和,可得,得,由,由正弦定理,得.故答案为:.【点睛】本题考查正余弦定理在解三角形中的应用,难度一般.14【解析】解:故答案为:【点睛】本题考查复数代数形式
12、的乘除运算,属于基础题.15【解析】依题意易得A、B、C、D四点共圆且圆心在x轴上,然后设出圆心,由圆的方程与椭圆方程联立得到B的横坐标,进一步得到D横坐标,再由计算比值即可.【详解】因为,所以A、B、C、D四点共圆,直径为,又A、C关于x轴对称,所以圆心E在x轴上,设圆心E为,则圆的方程为,联立椭圆方程消y得,解得,故B的横坐标为,又B、D中点是E,所以D的横坐标为,故.故答案为:.【点睛】本题考查椭圆中的四点共圆及三角形面积之比的问题,考查学生基本计算能力及转化与化归思想,本题关键是求出B、D横坐标,是一道有区分度的压轴填空题.16【解析】解一元二次不等式化简集合,再进行集合的交运算,即可
13、得到答案.【详解】,.故答案为:.【点睛】本题考查一元二次不等式的求解、集合的交运算,考查运算求解能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1);(2)见解析.【解析】(1)根据题意得出关于、的方程组,解出、的值,进而可得出椭圆的标准方程;(2)设点、,设直线的方程为,将该直线的方程与椭圆的方程联立,并列出韦达定理,由向量的坐标运算可求得点的坐标表达式,并代入韦达定理,消去,可得出点的横坐标,进而可得出结论.【详解】(1)由题意得,解得,.所以椭圆的方程是;(2)设直线的方程为,、,由,得.,则有,由,得,由,可得,综上,点在定直线上.【点睛】本题考
14、查椭圆方程的求解,同时也考查了点在定直线上的证明,考查计算能力与推理能力,属于中等题.18(1)见解析;(2)【解析】(1)可证面,从而可得.(2)可证点为线段的三等分点,再过作于,过作,垂足为,则为二面角的平面角,利用解直角三角形的方法可求.也可以建立如图所示的空间直角坐标系,利用两个平面的法向量来计算二面角的平面角的余弦值,最后利用同角三角函数的基本关系式可求.【详解】证明:(1)因为为中点,所以.因为平面平面,平面平面,平面,所以平面,而平面,故,又因为,所以,则,又,故面,又面,所以.(2)由(1)可得:面在面内的射影为,则为直线与平面所成的角,即.因为,所以,所以,所以,即点为线段的
15、三等分点.解法一:过作于,则平面,所以,过作,垂足为,则为二面角的平面角,因为,则在中,有,所以二面角的平面角的正切值为.解法二:以点为原点,建立如图所示的空间直角坐标系,则,设点,由得:,即,点,平面的一个法向量,又,设平面的一个法向量为,则,令,则平面的一个法向量为.设二面角的平面角为,则,即,所以二面角的正切值为.【点睛】线线垂直的判定可由线面垂直得到,也可以由两条线所成的角为得到,而线面垂直又可以由面面垂直得到,解题中注意三种垂直关系的转化. 空间中的角的计算,可以建立空间直角坐标系把角的计算归结为向量的夹角的计算,也可以构建空间角,把角的计算归结平面图形中的角的计算.19(1)详见解
16、析;(2).【解析】(1)根据平面,四边形是矩形,由为中点,且,利用平面几何知识,可得,又平面,所以,根据线面垂直的判定定理可有平面,从而得证.(2)分别以,为,轴建立空间直角坐标系,得到,分别求得平和平面的法向量,代入二面角向量公式求解.【详解】(1)证明:平面,四边形是矩形,为中点,且,.,与相似,平面,平面,平面,平面,.(2)如图,分别以,为,轴建立空间直角坐标系,则,设平面的法向量为,则,解得:,同理,平面的法向量,设二面角的大小为,则.即二面角的余弦值为.【点睛】本题主要考查线线垂直、线面垂直的转化以及二面角的求法,还考查了转化化归的思想和推理论证、运算求解的能力,属于中档题.20
17、(1)见解析;(2)【解析】(1)设点、,求出直线、的方程,与抛物线的方程联立,求出点、的坐标,利用直线、的斜率相等证明出;(2)设点到直线、的距离分别为、,求出,利用相似得出,可得出的边上的高,并利用弦长公式计算出,即可得出关于的表达式,结合不等式可解出实数的取值范围.【详解】(1)设点、,则,直线的方程为:,由,消去并整理得,由韦达定理可知,代入直线的方程,得,解得,同理,可得,,代入得,因此,;(2)设点到直线、的距离分别为、,则,由(1)知,同理,得,由,整理得,由韦达定理得,得,设点到直线的高为,则,解得,因此,实数的取值范围是.【点睛】本题考查直线与直线平行的证明,考查实数的取值范
18、围的求法,考查抛物线、直线方程、韦达定理、弦长公式、直线的斜率等基础知识,考查运算求解能力,考查数形结合思想,是难题21(1)证明见解析; (2).【解析】(1)利用已知条件化简出,当时,当时,再利用进行化简,得出,即可证明出为等差数列;(2)根据(1)中,求出数列的通项公式,再化简出,可直接求出的前100项和【详解】解:(1)由题意知,即,当时,由式可得;又时,有,代入式得,整理得,是首项为1,公差为1的等差数列(2)由(1)可得,是各项都为正数,又,则,即:.的前100项和【点睛】本题考查数列递推关系的应用,通项公式的求法以及裂项相消法求和,考查分析解题能力和计算能力.22(1)e;(2)2.【解析】(1)根据反函数的性质,得出,再利用导数的几何意义,求出曲线在点处的切线为,构造函数,利用导数求出单调性,即可得出的值;(2)设,求
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 流行钢琴练习曲小汤三视频教程
- 商业银行信贷风险管理流程与案例分析
- 电力系统设备检修与安全操作指南
- 幼儿园社交能力发展评价体系
- 人生成长咨询室设计方案
- 教师考编咨询方案有哪些(3篇)
- 财务转型咨询方案范文怎么写(3篇)
- 崇明区商务信息咨询方案(3篇)
- 企业管理咨询方案书范文(3篇)
- 大学生专业选择咨询方案(3篇)
- DB61-T 1327.8-2023 检验检测机构资质认定 第8部分:检验检测机构从业人员行为要求
- 初中英语单词中考必背
- 金色的鱼钩课本剧红色经典长征英语剧本
- 农村留守老年人及分散供养特困老年人探视巡访记录表
- 王羲之课件完整版
- 设计进度计划安排
- 校企合作-联合实验室合作协议书
- 汉语拼音《ieueer》教学课件
- 机电控制及可编程序控制器技术课程设计1
- HY/T 0326-2022无居民海岛使用价格评估规程
- GB/T 474-2008煤样的制备方法
评论
0/150
提交评论