安庆、安2021-2022学年高三第三次模拟考试数学试卷含解析_第1页
安庆、安2021-2022学年高三第三次模拟考试数学试卷含解析_第2页
安庆、安2021-2022学年高三第三次模拟考试数学试卷含解析_第3页
安庆、安2021-2022学年高三第三次模拟考试数学试卷含解析_第4页
安庆、安2021-2022学年高三第三次模拟考试数学试卷含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1若集合,则=( )ABCD2某四棱锥的三视图如图所示,记为此棱锥所有棱的长度的集合,则( ).A,且B,且C,且D,且3已知复数满足,且,则( )A3BCD4已知的展开式中第项与第项

2、的二项式系数相等,则奇数项的二项式系数和为( )ABCD5已知椭圆的中心为原点,为的左焦点,为上一点,满足且,则椭圆的方程为( )ABCD6高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,用其名字命名的“高斯函数”为:设,用表示不超过的最大整数,则称为高斯函数,例如:,已知函数(),则函数的值域为( )ABCD7已知函数的一条切线为,则的最小值为( )ABCD8命题“”的否定是( )ABCD9在明代程大位所著的算法统宗中有这样一首歌谣,“放牧人粗心大意,三畜偷偷吃苗青,苗主扣住牛马羊,要求赔偿五斗粮,三畜户主愿赔偿,牛马羊吃得异样马吃了牛的一半,羊吃了马的一半”请问各畜赔多

3、少?它的大意是放牧人放牧时粗心大意,牛、马、羊偷吃青苗,青苗主人扣住牛、马、羊向其主人要求赔偿五斗粮食(1斗=10升),三畜的主人同意赔偿,但牛、马、羊吃的青苗量各不相同马吃的青苗是牛的一半,羊吃的青苗是马的一半问羊、马、牛的主人应该分别向青苗主人赔偿多少升粮食?( )ABCD10已知为等比数列,则( )A9B9CD11双曲线x2a2-y2b2=1(a0,b0)的离心率为3,则其渐近线方程为Ay=2xBy=3xCy=22xDy=32x12某几何体的三视图如图所示,则该几何体中的最长棱长为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13在平面直角坐标系xOy中,已知双曲线(a0

4、)的一条渐近线方程为,则a_14已知椭圆:,F1、F2是椭圆的左、右焦点,A为椭圆的上顶点,延长AF2交椭圆于点B,若为等腰三角形,则椭圆的离心率为_.15已知是同一球面上的四个点,其中平面,是正三角形,则该球的表面积为_.16若函数在和上均单调递增,则实数的取值范围为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)设,函数,其中为自然对数的底数.(1)设函数.若,试判断函数与的图像在区间上是否有交点;求证:对任意的,直线都不是的切线;(2)设函数,试判断函数是否存在极小值,若存在,求出的取值范围;若不存在,请说明理由.18(12分)团购已成为时下商家和顾客均非常

5、青睐的一种省钱、高校的消费方式,不少商家同时加入多家团购网.现恰有三个团购网站在市开展了团购业务,市某调查公司为调查这三家团购网站在本市的开展情况,从本市已加入了团购网站的商家中随机地抽取了50家进行调查,他们加入这三家团购网站的情况如下图所示.(1)从所调查的50家商家中任选两家,求他们加入团购网站的数量不相等的概率;(2)从所调查的50家商家中任取两家,用表示这两家商家参加的团购网站数量之差的绝对值,求随机变量的分布列和数学期望;(3)将频率视为概率,现从市随机抽取3家已加入团购网站的商家,记其中恰好加入了两个团购网站的商家数为,试求事件“”的概率.19(12分)随着改革开放的不断深入,祖

6、国不断富强,人民的生活水平逐步提高,为了进一步改善民生,2019年1月1日起我国实施了个人所得税的新政策,其政策的主要内容包括:(1)个税起征点为5000元;(2)每月应纳税所得额(含税)收入个税起征点专项附加扣除;(3)专项附加扣除包括赡养老人费用子女教育费用继续教育费用大病医疗费用等其中前两项的扣除标准为:赡养老人费用:每月扣除2000元子女教育费用:每个子女每月扣除1000元新个税政策的税率表部分内容如下:级数一级二级三级四级每月应纳税所得额(含税)不超过3000元的部分超过3000元至12000元的部分超过12000元至25000元的部分超过25000元至35000元的部分税率3102

7、025(1)现有李某月收入29600元,膝下有一名子女,需要赡养老人,除此之外,无其它专项附加扣除请问李某月应缴纳的个税金额为多少?(2)为研究月薪为20000元的群体的纳税情况,现收集了某城市500名的公司白领的相关资料,通过整理资料可知,有一个孩子的有400人,没有孩子的有100人,有一个孩子的人中有300人需要赡养老人,没有孩子的人中有50人需要赡养老人,并且他们均不符合其它专项附加扣除(受统计的500人中,任何两人均不在一个家庭)若他们的月收入均为20000元,依据样本估计总体的思想,试估计在新个税政策下这类人群缴纳个税金额的分布列与期望20(12分)已知函数,(1)当时,求不等式的解

8、集; (2)若函数的图象与轴恰好围成一个直角三角形,求的值21(12分)已知椭圆:()的左、右顶点分别为、,焦距为2,点为椭圆上异于、的点,且直线和的斜率之积为.(1)求的方程;(2)设直线与轴的交点为,过坐标原点作交椭圆于点,试探究是否为定值,若是,求出该定值;若不是,请说明理由.22(10分)设函数(1)求不等式的解集;(2)若的最小值为,且,求的最小值参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1C【解析】求出集合,然后与集合取交集即可【详解】由题意,则,故答案为C.【点睛】本题考查了分式不等式的解法,考查了集合的交集,考

9、查了计算能力,属于基础题2D【解析】首先把三视图转换为几何体,根据三视图的长度,进一步求出个各棱长.【详解】根据几何体的三视图转换为几何体为:该几何体为四棱锥体,如图所示:所以:,.故选:D.【点睛】本题考查三视图和几何体之间的转换,主要考查运算能力和转换能力及思维能力,属于基础题.3C【解析】设,则,利用和求得,即可.【详解】设,则,因为,则,所以,又,即,所以,所以,故选:C【点睛】本题考查复数的乘法法则的应用,考查共轭复数的应用.4D【解析】因为的展开式中第4项与第8项的二项式系数相等,所以,解得,所以二项式中奇数项的二项式系数和为考点:二项式系数,二项式系数和5B【解析】由题意可得c=

10、,设右焦点为F,由|OP|=|OF|=|OF|知,PFF=FPO,OFP=OPF,所以PFF+OFP=FPO+OPF,由PFF+OFP+FPO+OPF=180知,FPO+OPF=90,即PFPF在RtPFF中,由勾股定理,得|PF|=,由椭圆定义,得|PF|+|PF|=2a=4+8=12,从而a=6,得a2=36,于是 b2=a2c2=36=16,所以椭圆的方程为故选B点睛:椭圆的定义:到两定点距离之和为常数的点的轨迹,当和大于两定点间的距离时,轨迹是椭圆,当和等于两定点间的距离时,轨迹是线段(两定点间的连线段),当和小于两定点间的距离时,轨迹不存在6B【解析】利用换元法化简解析式为二次函数的

11、形式,根据二次函数的性质求得的取值范围,由此求得的值域.【详解】因为(),所以,令(),则(),函数的对称轴方程为,所以,所以,所以的值域为.故选:B【点睛】本小题考查函数的定义域与值域等基础知识,考查学生分析问题,解决问题的能力,运算求解能力,转化与化归思想,换元思想,分类讨论和应用意识.7A【解析】求导得到,根据切线方程得到,故,设,求导得到函数在上单调递减,在上单调递增,故,计算得到答案.【详解】,则,取,故,.故,故,.设,取,解得.故函数在上单调递减,在上单调递增,故.故选:.【点睛】本题考查函数的切线问题,利用导数求最值,意在考查学生的计算能力和综合应用能力.8D【解析】根据全称命

12、题的否定是特称命题,对命题进行改写即可.【详解】全称命题的否定是特称命题,所以命题“,”的否定是:,故选D【点睛】本题考查全称命题的否定,难度容易.9D【解析】设羊户赔粮升,马户赔粮升,牛户赔粮升,易知成等比数列,结合等比数列的性质可求出答案.【详解】设羊户赔粮升,马户赔粮升,牛户赔粮升,则成等比数列,且公比,则,故,.故选:D.【点睛】本题考查数列与数学文化,考查了等比数列的性质,考查了学生的运算求解能力,属于基础题.10C【解析】根据等比数列的下标和性质可求出,便可得出等比数列的公比,再根据等比数列的性质即可求出.【详解】,又,可解得或设等比数列的公比为,则当时, ;当时, ,.故选:C【

13、点睛】本题主要考查等比数列的性质应用,意在考查学生的数学运算能力,属于基础题.11A【解析】分析:根据离心率得a,c关系,进而得a,b关系,再根据双曲线方程求渐近线方程,得结果.详解:e=ca=3,b2a2=c2-a2a2=e2-1=3-1=2,ba=2,因为渐近线方程为y=bax,所以渐近线方程为y=2x,选A.点睛:已知双曲线方程x2a2-y2b2=1(a,b0)求渐近线方程:x2a2-y2b2=0y=bax.12C【解析】根据三视图,可得该几何体是一个三棱锥,并且平面SAC平面ABC,过S作,连接BD ,再求得其它的棱长比较下结论.【详解】如图所示:由三视图得:该几何体是一个三棱锥,且平

14、面SAC 平面ABC,过S作,连接BD,则 ,所以 , ,该几何体中的最长棱长为.故选:C【点睛】本题主要考查三视图还原几何体,还考查了空间想象和运算求解的能力,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。133【解析】双曲线的焦点在轴上,渐近线为,结合渐近线方程为可求.【详解】因为双曲线(a0)的渐近线为,且一条渐近线方程为,所以.故答案为:.【点睛】本题主要考查双曲线的渐近线,明确双曲线的焦点位置,写出双曲线的渐近线方程的对应形式是求解的关键,侧重考查数学运算的核心素养.14【解析】由题意可得等腰三角形的两条相等的边,设,由题可得的长,在三角形中,三角形中由余弦定理可得的值

15、相等,可得的关系,从而求出椭圆的离心率【详解】如图,若为等腰三角形,则|BF1|=|AB|.设|BF2|=t,则|BF1|=2at,所以|AB|=a+t=|BF1|=2at,解得a=2t,即|AB|=|BF1|=3t,|AF1|=2t,设BAO=,则BAF1=2,所以的离心率e=,结合余弦定理,易得在中,所以,即e= =,故答案为:.【点睛】此题考查椭圆的定义及余弦定理的简单应用,属于中档题.15【解析】求得等边三角形的外接圆半径,利用勾股定理求得三棱锥外接球的半径,进而求得外接球的表面积.【详解】设是等边三角形的外心,则球心在其正上方处.设,由正弦定理得.所以得三棱锥外接球的半径,所以外接球

16、的表面积为.故答案为:【点睛】本小题主要考查几何体外接球表面积的计算,属于基础题.16【解析】化简函数,求出在上的单调递增区间,然后根据在和上均单调递增,列出不等式求解即可【详解】由知,当时,在和上单调递增,在和上均单调递增,的取值范围为:故答案为:【点睛】本题主要考查了三角函数的图象与性质,关键是根据函数的单调性列出关于m的方程组,属中档题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1)函数与的图象在区间上有交点;证明见解析;(2)且;【解析】(1)令,结合函数零点的判定定理判断即可;设切点横坐标为,求出切线方程,得到,根据函数的单调性判断即可;(2)求出的解析式,通

17、过讨论的范围,求出函数的单调区间,确定的范围即可【详解】解:(1)当时,函数,令,则,故,又函数在区间上的图象是不间断曲线,故函数在区间上有零点,故函数与的图象在区间上有交点;证明:假设存在,使得直线是曲线的切线,切点横坐标为,且,则切线在点切线方程为,即,从而,且,消去,得,故满足等式,令,所以,故函数在和上单调递增,又函数在时,故方程有唯一解,又,故不存在,即证;(2)由得,令,则,当时,递减,故当时,递增,当时,递减,故在处取得极大值,不合题意;时,则在递减,在,递增,当时,故在递减,可得当时,当时,易证,令,令,故,则,故在递增,则,即时,故在,内存在,使得,故在,上递减,在,递增,故

18、在处取得极小值由(1)知,故在递减,在递增,故时,递增,不合题意;当时,当,时,递减,当时,递增,故在处取极小值,符合题意,综上,实数的范围是且【点睛】本题考查了函数的单调性,最值问题,考查导数的应用以及分类讨论思想,转化思想,属于难题18(1);(2)从而的分布列为012;(3).【解析】(1)运用概率的计算公式求概率分布,再运用数学期望公式进行求解;(2)借助题设条件运用贝努力公式进行分析求解:(1)记所选取额两家商家加入团购网站的数量相等为事件,则,所以他们加入团购网站的数量不相等的概率为.(2)由题,知的可能取值分别为0,1,2,从而的分布列为012.(3)所调查的50家商家中加入了两

19、个团购网站的商家有25家,将频率视为概率,则从市中任取一家加入团购网站的商家,他同时加入了两个团购网站的概率为,所以,所以事件“”的概率为.19(1)李某月应缴纳的个税金额为元,(2)分布列详见解析,期望为1150元【解析】(1)分段计算个人所得税额;(2)随机变量X的所有可能的取值为990,1190,1390,1590,分别求出各值对应的概率,列出分布列,求期望即可【详解】解:(1)李某月应纳税所得额(含税)为:2960050001000200021600元不超过3000的部分税额为30003%90元超过3000元至12000元的部分税额为900010%900元,超过12000元至25000

20、元的部分税额为960020%1920元所以李某月应缴纳的个税金额为9090019202910元,(2)有一个孩子需要赡养老人应纳税所得额(含税)为:2000050001000200012000元,月应缴纳的个税金额为:90900990元有一个孩子不需要赡养老人应纳税所得额(含税)为:200005000100014000元,月应缴纳的个税金额为:909004001390元;没有孩子需要赡养老人应纳税所得额(含税)为:200005000200013000元,月应缴纳的个税金额为:909002001190元;没有孩子不需要赡养老人应纳税所得额(含税)为:20000500015000元,月应缴纳的个税金额为:909006001590元;所以随机变量X的分布列为:9901190139

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论